Advertisement

Microbial Ecology

, Volume 46, Issue 3, pp 322–336 | Cite as

Bacterial Diversity in Shallow Oligotrophic Marine Benthos and Overlying Waters: Effects of Virus Infection, Containment, and Nutrient Enrichment

  • I. Hewson
  • G. A. Vargo
  • J. A. Fuhrman
Article

Abstract

Little is known of the factors shaping sediment bacterial communities, despite their high abundance and reports of high diversity. Two factors hypothesized to shape bacterial communities in the water column are nutrient (resource) availability and virus infection. The role these factors play in benthic bacterial diversity was assessed in oligotrophic carbonate–based sediments of Florida Bay (USA). Sediment–water mesocosm enclosures were made from 1-m diameter clear polycarbonate cylinders which were pushed into sediments to ˜201 cm sediment depth enclosing ˜80 L of water. Mesocosms were amended each day for 14 d with 10 µM NH 4 + and 1 µM PO 4 3− . In a second experiment, viruses from a benthic flocculent layer were concentrated and added back to flocculent layer samples which were collected near the mesocosm enclosures. Photosynthesis by microalgae in virus-amended incubations was monitored by pulse-amplitude modulated (PAM) fluorescence. In both experiments, bacterial diversity was estimated using automated rRNA intergenic spacer analysis (ARISA), a high-resolution fingerprinting approach. Initial sediment bacterial operational taxonomic unit (OTU) richness (236 ± 3) was higher than in the water column (148 ± 9), where an OTU was detectable when its amplified DNA represented >0.09% of the total amplified DNA. Effects on bacterial diversity and operational taxonomic unit (OTU) richness in nutrient-amended mesocosms may have been masked by the effects of containment, which stimulated OTU richness in the water column, but depressed OTU richness and diversity in sediments. Nutrient addition significantly elevated virus abundance and the ratio of viruses to bacteria (p < 0.05 for both) in the sediments, concomitant with elevated bacterial diversity. However, water column bacterial diversity (in unamended controls) was not affected by nutrient amendments, which may be due to rapid nutrient uptake by sediment organisms or adsorption of P to carbonate sediments. Addition of live viruses to benthic flocculent layer samples increased bacterial OTU diversity and richness compared with heat-killed controls; however, cluster analyses showed that the community structure in the virus-amended mesocosms varied greatly between replicates. Despite the strong effects upon eubacterial communities, photosynthesis of co-occurring protists and cyanobacteria was not significantly altered by the presence of virus concentrates. This study supports the hypothesis that nutrient availability plays a key role in shaping sediment bacterial communities, and also that viruses may regulate the abundance of the dominant competitors and allow less dominant organisms to maintain or increase their abundance in a community due to decreased competition for resources.

Keywords

Bacterial Community Internally Transcribe Spacer Bacterial Diversity Operational Taxonomic Unit Terminal Restriction Fragment Length Polymorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors thank C. Heil, D. Ault, M.B. Neely, S. Murasko (USF), G. Hitchcock, J. Jurado (UMiami, RSMAS), L. Gilbane, M.S. Schwalbach, J. Steele (USC), J. Burns (UMD), and two anonymous reviewers for helpful comments on the manuscript. We thank the entire staff and vessel operators at the FIO/FMRI Keys Marine Laboratory, Layton, Florida, for their assistance in this study. I.H. was supported by a USC Seagrant Traineeship while conducting this study. This work was supported by NSF grants OCE9906989, OCE0084231, and OCE9705523 awarded to J.A.F and NOAA/COP/SFERPM2000 Award No. NAO60PO519 to G.A.V. (G. Hitchcock, UM/RSMAS, co-PI).

References

  1. 1.
    Abal, EG, Dennison, WC 1996Seagrass depth range and water quality in southern Moreton Bay, Queensland, Australia.Mar Freshwat Res47763771Google Scholar
  2. 2.
    Ackermann, HW, DuBow, MS 1987General Properties of Bacteriophages, 1st ed, vol 1.CRC PressBoca Raton, FLGoogle Scholar
  3. 3.
    Anger, K 1975On the influence of sewage pollution on inshore benthic communities in the South of Kiel Bay. Part 2. Quantitative studies on community structure.Helgol Wiss Meeresunters27408438Google Scholar
  4. 4.
    AvanissAghajani, E, Jones, K, Chapman, D, Brunk, C 1994A molecular technique for identification of bacteria using small subunit ribosomal RNA sequences.Biotechniques17144149PubMedGoogle Scholar
  5. 5.
    Bergh, O, Borsheim, KY, Bratbak, G, Heldal, M 1989High abundance of viruses found in aquatic environments.Nature340467468PubMedGoogle Scholar
  6. 6.
    Bird, DF, Juniper, SK, RicciardiRigault, M, Martineu, P, Prairie, YT, Calvert, SE 2001Subsurface viruses and bacteria in Holocene/Late Pleistocene sediments of Saanich Inlet, BC: ODP Holes 1033B and 1034B, Leg 169S.Mar Geol174227239CrossRefGoogle Scholar
  7. 7.
    Borneman, J, Triplett, EW 1997Molecular microbial diversity in soils from eastern Amazonia: Evidence for unusual microorganisms and microbial population shifts associated with deforestation.Appl Environ Microbiol6326472653PubMedGoogle Scholar
  8. 8.
    Bratbak, G, Heldal, M, Thingstad, TF, Tuomi, P 1996Dynamics of virus abundance in coastal seawater.FEMS Microbiol Ecol19263269CrossRefGoogle Scholar
  9. 9.
    Chao, A 1987Non-parametric estimation of the number of classes in a population.Scand J Statist11265270Google Scholar
  10. 10.
    Cifuentes, A, Anton, J, Bentloch, S, Donnelly, A, Herbert, RA, Rodriguez-Valera, F 2000Prokaryotic diversity in Zostera noltii–colonized marine sediments.Appl Environ Microbiol6617151719CrossRefPubMedGoogle Scholar
  11. 11.
    Connell, JH 1972Community interactions on marine rocky intertidal shores.Ann Rev Ecol Systematics3169192CrossRefGoogle Scholar
  12. 12.
    Cotner, JB, Sada, RH, Bootsma, H, Johengen, T, Cavaletto, JF, Gardner, WS 2000Nutrient limitation of heterotrophic bacteria in Florida Bay.Estuaries23611620Google Scholar
  13. 13.
    Danovaro, R, DellÁnno, A, Trucco, A, Serresi, M, Vanucci, S 2001Determination of virus abundance in marine sediments.Appl Environ Microbiol6713841387CrossRefPubMedGoogle Scholar
  14. 14.
    Danovaro, R, Manini, E, DellÁnno, A 2002Higher abundance of bacteria than of viruses in deep Mediterranean sediments.Appl Environ Microbiol6814681472CrossRefPubMedGoogle Scholar
  15. 15.
    Danovaro, R, Serresi, M 2000Viral density and virus-to-bacterium ratio in deep-sea sediments of the eastern mediterranean.Appl Environ Microbiol6618571861CrossRefPubMedGoogle Scholar
  16. 16.
    Fisher, MM, Triplett, EW 1999Automated approach for ribsomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities.Appl Environ Microbiol6546304836Google Scholar
  17. 17.
    Fuhrman, JA 1999Marine viruses and their biogeochemical and ecological effects.Nature399541548PubMedGoogle Scholar
  18. 18.
    Fuhrman, JA, Comeau, DE, Hagstrom, A, Chan, AM 1988Extraction of DNA suitable for molecular biological studies from natural planktonic microorganisms.Appl Environ Microbiol5414261429Google Scholar
  19. 19.
    Fuhrman, JA, Suttle, CA 1993Viruses in marine planktonic systems.Oceanography65163Google Scholar
  20. 20.
    Garcia-Martinez, J, Acinas, SG, Antón, AI, Rodriguez-Valera, F 1999Use of the 16S-23S ribosomal genes spacer region in studies of prokaryotic diversity.J Microbiol Methods365564CrossRefPubMedGoogle Scholar
  21. 21.
    Giovannoni, SJ, Britschgi, TB, Moyer, CL, Field, KG 1990Genetic diversity in Sargasso Sea bacterioplankton.Nature3456063PubMedGoogle Scholar
  22. 22.
    Gonzales, JM, Simó, R, Massana, R, Covert, JS, Casamayor, EO, Pedrós-Alió, C, Moran, MA 2000Bacterial community structure associated with a dimethylsulfoniopropionate-producing North Atlantic algal bloom.Appl Environ Microbiol6642374246CrossRefPubMedGoogle Scholar
  23. 23.
    Graco, M, Farías, L, Molina, V, Gutiérrez, D, Nielsen, LP 2001Massive developments of microbial mats following phytoplankton blooms in a naturally eutrophic bay: Implications for nitrogen cycling.Limnology Oceanogr46821832Google Scholar
  24. 24.
    Guthrie, JN, Moriarty, DJW, Blackall, LL 2000DNA extraction from coral reef sediment bacteria for the polymerase chain reaction.Microbiol Methods437380PubMedGoogle Scholar
  25. 25.
    Hardin, G 1960The competitive exclusion principle.Science13112921297Google Scholar
  26. 26.
    Hartig, P, Wolfstein, K, Lippemeier, S, Colijn, F 1998Photosynthetic activity of natural microphytobentos populations measured by fluorescence (PAM) and 14C-tracer methods: A comparison.Mar Ecol Prog Ser1665362Google Scholar
  27. 27.
    Hewson, I, Fuhrman, JA 2002Viriobenthos abundance and production in neritic and basin sediments of Southern California.Eos83OS31C29Google Scholar
  28. 28.
    Hewson, I, O′Neil, JM, Dennison, WC 2001Virus-like particles associated with Lyngbya majuscula (Cyanophyta; Oscillatoriacea) bloom decline in Moreton Bay, Australia.Aquat Microb Ecol25207213Google Scholar
  29. 29.
    Hewson, I, O′Neil, JM, Fuhrman, JA, Dennison, WC 2001Virus-like particle distribution and abundance in sediments and overlying waters along eutrophication gradients in two subtropical estuaries.Limnol Oceanogr4717341746Google Scholar
  30. 30.
    Hewson, I, O’Neil, JM, Heil, CA, Bratbak, G, Dennison, WC 2001Effects of concentrated natural viral communities on photosynthesis and community composition of co-occurring benthic microalgae and phytoplankton.Aquat Microb Ecol25110Google Scholar
  31. 31.
    Hughes, JB, Hellmann, JJ, Rocketts, TH, Bohannan, BJM 2001Counting the uncountable: Statistical approaches to estimating microbial diversity.Appl Environ Microbiol6743994406CrossRefPubMedGoogle Scholar
  32. 32.
    Huisman, J, Weissing, FJ 1999Biodiversity of plankton by species oscillations and chaos.Nature402407410CrossRefGoogle Scholar
  33. 33.
    Hutchinson, GE 1961The paradox of the plankton.Am Naturalist95137146CrossRefGoogle Scholar
  34. 34.
    Jiang, SC, Paul, JH 1998Gene transfer by transduction in the marine environment.Appl Environ Microbiol6427802787PubMedGoogle Scholar
  35. 35.
    Klappenbach, JL, Dunbar, JM, Schmidt, TM 2000rRNA operon copy number reflects ecological strategies of bacteria.Appl Environ Microbiol6613281333CrossRefPubMedGoogle Scholar
  36. 36.
    Koop, K, Booth, D, Broadbent, A, Brodie, J, Bucher, D, Capone, D, Coll, J, Dennison, WC, Erdmann, M, Harrison, P, HoeghGuldberg, O, Hutchings, P, Jones, G, Larkum, AWD, O′Neil, JM, Steven, A, Tentori, T, Ward, S, Williamson, J, Yellowlees, D 2001ENCORE: The effect of nutrient enrichment on coral reefs. Synthesis of results and conclusions.Mar Pollut Bull4291120Google Scholar
  37. 37.
    Lassen, C, Revsbech, NP, Pedersen, O 1997Macrophyte development and resuspension regulate the photosynthesis and production of benthic microalgae.Hydrobiologia350111CrossRefGoogle Scholar
  38. 38.
    Laverman, AM, Speksnijder, AGCL, Braster, M, Kowalchuk, GA, Verhof, HA, vanVerseveld, HW 2001Spatiotemporal stability of ammonia-oxidizing community in a nitrogen-saturated forest soil.Microb Ecol423545PubMedGoogle Scholar
  39. 39.
    Li, LN, Kato, C, Horikoshi, K 1999Bacterial diversity in deep sea sediments form different depths.Biodiversity Conservation8650667Google Scholar
  40. 40.
    Liu, WT, Marsh, TL, Cheng, H, Forney, LJ 1997Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA.Appl Environ Microbiol6345164522PubMedGoogle Scholar
  41. 41.
    Madrid, VM, Aller, JY, Aller, RC, Christoserdov, AY 2001High prokaryote diversity and analysis of community structure in mobile mud deposits off French Guiana: Identification of two new bacterial candidate divisions.FEMS Microbiol Ecol37197209CrossRefGoogle Scholar
  42. 42.
    Maranger, P, Bird, DF 1996High concentrations of viruses in the sediments of Lake Gilbert, Quebec.Microb Ecol31141151Google Scholar
  43. 43.
    Marchesi, JR, Weightman, AJ, Crag, BA, Parkes, RJ, Fry, JC 2001Methanogen and bacterial diversity and distribution in deep sea hydrate sediments from the Cascadia Margin as revealed by 16s rRNA molecular analysis.FEMS Microbiol Ecol34221228Google Scholar
  44. 44.
    Noble, RT, Fuhrman, JA 1998Use of SYBR Green I rapid epifluoresence counts of marine viruses and bacteria.Aquat Microb Ecol14113118Google Scholar
  45. 45.
    Paul, JH, Rose, JB, Jiang, SC, Kellogg, CA, Dickson, L 1993Distribution of viral abundance in the reef environment of Key Largo, Florida.Appl Environ Microbiol59718724PubMedGoogle Scholar
  46. 46.
    Proctor, LM, Fuhrman, JA 1992Mortality of marine bacteria in response to enrichments of the virus size fraction from seawater.Mar Ecol Prog Ser87283293Google Scholar
  47. 47.
    Proctor, LM, Fuhrman, JA 1990Viral mortality of marine bacteria and cyanobacteria.Nature3436061CrossRefGoogle Scholar
  48. 48.
    Robinson, JV, Sandgren, CD 1983The effect of temporal environmental heterogeneity on community structure: a replicated experimental study.Oecologia (Berlin)5798102Google Scholar
  49. 49.
    Rocap, G, Distel, DL, Waterbury, JB, Chisolm, SW 2002Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences.Appl Environ Microbiol6811801191CrossRefPubMedGoogle Scholar
  50. 50.
    Rohwer, F, Segall, A, Steward, G, Seguritan, V, Breitbart, M, Wolven, F, Azam, F 2000The complete genomic sequence of the marine phage Roseophage SI01 shares homology with nonmarine phages.Limnol Oceanogr45408418Google Scholar
  51. 51.
    Sellner, KG 1997Physiology, ecology and toxic properties of marine cyanobacterial blooms.Limnol Oceanogr4210891104Google Scholar
  52. 52.
    Simek, K, Pernthaler, J, Weinbauer, MG, Hornák, K, Dolan, JR, Nedoma, J, Masín, M, Amann, R 2001Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir.Appl Environ Microbiol6727232733CrossRefPubMedGoogle Scholar
  53. 53.
    Sokal, RR, Rohlf, FJ 1995Biometry. The Principles and Practice of Statistics in Biological Research, vol 3.FreemanNew YorkGoogle Scholar
  54. 54.
    Suttle, CA 1992Inhibition of photosynthesis in phytoplankton by the submicron size fraction concentrated from seawater.Mar Ecol Prog Ser87105112Google Scholar
  55. 55.
    Suttle, CA, Chan, AM 1993Marine cyanophages infecting oceanic and coastal strains of Synechococcus: Abundance, morphology, cross-infectivity and growth characteristics.Mar Ecol Prog Ser9299109Google Scholar
  56. 56.
    Suttle, CA, Chan, AM, Cottrell, MT 1990Infection of phytoplankton by viruses and reduction of primary productivity.Nature347467469CrossRefGoogle Scholar
  57. 57.
    Suttle, CA, Chan, AM, Cottrell, MT 1991Use of ultrafiltration to isolate viruses from seawater which are pathogens of marine phytoplankton.Appl Environ Microbiol57721726Google Scholar
  58. 58.
    Suzuki, MT, Rappe, MS, Haimberger, ZW, Winfield, H, Adair, N, Stroebel, J, Giovannoni, SJ 1997Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample.Appl Environ Microbiol63983989PubMedGoogle Scholar
  59. 59.
    Thingstad, TF, Heldal, M, Bratbak, G, Dundas, I 1993Are viruses important partners in pelagic food webs?Trends Evolutionary Ecol8209213CrossRefGoogle Scholar
  60. 60.
    Todorov, JR, Christoserdov, AY, Aller, JY 2000Molecular analysis of microbial communities in mobile deltaic muds of Southeastern Papua New Guinea.FEMS Microbiol Ecol33147155CrossRefPubMedGoogle Scholar
  61. 61.
    Tuomi, P, Fagerbakke, KM, Bratbak, G, Heldal, M 1995Nutritional enrichment of a microbial community: The effects on activity, elemental composition, community structure and virus production.FEMS Microbiol Ecoll6123134CrossRefGoogle Scholar
  62. 62.
    Valiela, I, McClelland, J, Hauxwell, J, Behr, PJ, Hersh, D, Foreman, K 1997Macroalgal blooms in shallow estuaries: Controls and ecophysiological and ecosystem consequences.Limnol Oceanog4211051118Google Scholar
  63. 63.
    Ward, DM, Weller, R, Bateson, MM 1990rRNA sequences reveal numerous uncultured microorganisms in a natural community.Nature3456365PubMedGoogle Scholar
  64. 64.
    Weinbauer, MG, Fuks, D, Peduzzi, P 1993Distribution of viruses and dissolved DNA along a coastal trophic gradient in the northern Adriatic Sea.Appl Environ Microbiol5940744082Google Scholar
  65. 65.
    Weinbauer, MG, Peduzzi, P 1995Effect of virus-rich high molecular weight concentrates of seawater on the dynamics of dissolved amino acids and carbohydrates.Mar Ecol Prog127245253Google Scholar
  66. 66.
    Williamson, SJ, Houchin, LA, McDaniel, L, Paul, JH 2002Seasonal variation in lysogeny as depicted by prophage induction in Tampa Bay, Florida.Appl Environ Microbiol6843074314CrossRefPubMedGoogle Scholar
  67. 67.
    Wilson, WH, Carr, NG, Mann, NH 1996The effect of phosphate status on the kinetics of cyanophage infection in the oceanic cyanobacterium Synechococcus sp. WH7803.J Phycol32506516Google Scholar
  68. 68.
    Wilson, WH, Joint, IR, Carr, NG, Mann, NH 1993Isolation and molecular characterization of five marine cyanophages propagated on Synechococcus sp. strain WH7803.Appl Environ Microbiol5937363743Google Scholar
  69. 69.
    Wilson, WH, Turner, S, Mann, NH 1998Population dynamics of phytoplankton and viruses in a phosphate-limited mesocosm and their effects on DMSP and DMS production.Estuarine Coastal Shelf Sci464959CrossRefGoogle Scholar
  70. 70.
    Xu, JP, Noble, M, Eittreim, SL, Rosenfeld, LK, Schwing, FB, Pilskaln, CH 2002Distribution and transport of suspended particulate matter in Monterey Canyon, California.Mar Geol181215234CrossRefGoogle Scholar
  71. 71.
    Zar, JH 1984Biostatistical Analyses, 2nd ed.Prentice-HallNew YorkGoogle Scholar
  72. 72.
    Zhong, Y, Chen, F, Wilhelm, SW, Poorvin, L, Hodson, RE 2002Phylogenetic diversity of marine cyanophage isolated and natural virus communities as revealed by sequences of viral capsid assembly proteins.Appl Environ Microbiol6815761584CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of Southern CaliforniaUSA
  2. 2.College of Marine Science, University of South FloridaUSA

Personalised recommendations