Microbial Ecology

, Volume 46, Issue 3, pp 337–347 | Cite as

Viriobenthos Production and Virioplankton Sorptive Scavenging by Suspended Sediment Particles in Coastal and Pelagic Waters

Article

Abstract

Virus production in oxic surface sediments and virioplankton sorption to suspended particles was estimated across three stations in the Southern California region (33.4°N, 118.6°W). Viriobenthos production was estimated using a sterile sediment and filtered porewater dilution technique that targeted production from both attached bacteria and bacteria living free in the porewater, and attached bacteria alone. Potential virus production rates by bacteria free in the porewater ranged from 1.7 to 4.6 × 108 VLP cm−3 h−1, while attached bacteria had slower potential production rates of between 0.4 and 1.1 × 108 VLP cm−3 h−1, suggesting turnover rates of viruses in sediments (1–5 h) which are significantly higher than those of virioplankton (~24–48 h). Virioplankton adsorbed to small (<150 µm) suspended sediments at stations with high ambient suspended solid concentrations. Virioplankton scavenging rates combined with published sedimentation rates demonstrate that this mechanism of virus arrival could only account for 0.01% of daily benthic virus production. Calculated mortality rates of benthic bacteria (4–14% h−1) suggest viruses may play an important role in sediment carbon cycling.

Notes

Acknowledgements

The authors thank the crew of the R/V Point Sur, the staff of the Wrigley Marine Science Center on Santa Catalina Island, D. Hammond, W. Berelson, D. Capone, D. Kiefer, D. Caron, M. Schwalbach, J. Steele, and X. Liang for their assistance and input. I.H. was supported by a USC Seagrant Traineeship while conducting this research. This work was supported by NSF Grant OCE9906989 awarded to J.F.

References

  1. 1.
    Berelson, WM 1991The flushing of 2 deep-sea basins, Southern California Borderland.Limnol Oceanogr3611501166Google Scholar
  2. 2.
    Bird, DF, Juniper, SK, RicciardiRigault, M, Martineu, P, Prairie, YT, Calvert, SE 2001Subsurface viruses and bacteria in Holocene/Late Pleistocene sediments of Saanich Inlet, BC: ODP Holes 1033B and 1034B, Leg 169S.Mar Geol174227239CrossRefGoogle Scholar
  3. 3.
    Blackburn, TH, Blackburn, ND 1993Coupling of cycles and global significance of sediment diagenesis.Mar Geol113101110CrossRefGoogle Scholar
  4. 4.
    Bratbak, G, Heldal, M, Thingstad, TF, Reimann, B, Haslund, OH 1992Incorporation of viruses into the budget of microbial C-transfer.A first approach. Mar Ecol Prog Ser83273280Google Scholar
  5. 5.
    Cammen, LM 1991Annual bacterial production in relation to benthic microalgal produiction and sediment oxygen uptake in an intertidal sandflat and an intertidal mudflat.Mar Ecol Prog Ser711325Google Scholar
  6. 6.
    Collier, R, Dymond, J, Honjo, S, Manganini, S, Francois, R, Dunbar, R 2000The vertical flux of biogenic and lithogenic material in the Ross Sea: Moored sediment trap observations 1996–1998.Deep Sea Res Part II—Top Studies Oceanogr4734913520CrossRefGoogle Scholar
  7. 7.
    Danovaro, R, DellÁnno, A, Trucco, A, Serresi, M, Vanucci, S 2001Determination of virus abundance in marine sediments.Appl Environ Microbiol6713841387CrossRefPubMedGoogle Scholar
  8. 8.
    Danovaro, R, Serresi, M 2000Viral density and virus-to-bacterium ratio in deep-sea sediments of the eastern Mediterranean.App Environ Microbiol6618571861CrossRefGoogle Scholar
  9. 9.
    Drake, LA, Choi, KH, Haskell, AGE, Dobbs, FC 1998Vertical profiles of virus-like particles and bacteria in the water column and sediments of Chesapeake Bay, USA.Aqua Microb Ecol161725Google Scholar
  10. 10.
    Fischer, UR, Velimirov, B 2000High control of bacterial production by viruses in a eutrophic oxbow lake.Aquat Microb Ecol27112Google Scholar
  11. 11.
    Flood, JA, Ashbolt, NJ 1999Virus-sized particles can be entrapped and concentrated one hundred fold within wetland biofilms.Adv Environ Res3403411Google Scholar
  12. 12.
    Fuhrman, JA 1999Marine viruses and their biogeochemical and ecological effects.Nature399541548PubMedGoogle Scholar
  13. 13.
    Fuhrman, JA, Noble, RT 1995Viruses and protists cause similar bacterial mortality in coastal seawater.Limnol Oceanogr4012361242Google Scholar
  14. 14.
    Gorsline, DS 1992The geological setting of Santa Monica and San Pedro Basins, California Continental Borderland.Prog Oceanogr30136CrossRefGoogle Scholar
  15. 15.
    Greibler, C, Mindl, B, Slezak, D 2001Combining DAPI and SYBR Green II for the enumeration of total bacterial numbers in aquatic sediments.Int Rev Hydrobiol86453465CrossRefGoogle Scholar
  16. 16.
    Gundersen, K, Bratbak, G, Heldal, M 1996Factors influencing the loss of bacteria in preserved seawater samples.Mar Ecol Prog Ser137305310Google Scholar
  17. 17.
    Hansen, JA, Alongi, DM 1991Bacterial productivity and benthic standing stocks in a tropical coastal embayment.Mar Ecol Prog Ser68301310Google Scholar
  18. 18.
    Heldal, M, Bratbak, G 1991Production and decay of viruses in aquatic environments.Mar Ecol Prog Ser72205212Google Scholar
  19. 19.
    Hewson, I, O’Neil, JM, Fuhrman, JA, Dennison, WC 2001Virus-like particle distribution and abundance in sediments and overlying waters along eutrophication gradients in two subtropical estuaries.Limnol Oceanogr4717341746Google Scholar
  20. 20.
    Hewson, I, O’Neil, JM, Heil, CA, Bratbak, G, Dennison, WC 2001Effects of concentrated natural viral communities on photosynthesis and community composition of co-occuring benthic microalgae and phytoplankton.Aquat Microb Ecol25110Google Scholar
  21. 21.
    Hickey, BM 1992Circulation over the Santa Monica San Pedro Basin and shelf.Prog Oceanogr3037115CrossRefGoogle Scholar
  22. 22.
    Jiang, SC, Paul, JH 1994Seasonal and diel abundance of viruses and occurrence of lysogeny/bacteriocinogeny in the marine environment.Mar Ecol Prog Ser104163172Google Scholar
  23. 23.
    Kieppel, GS 1992Environmental regulation of feeding and egg production by Acartia tonsa off Southern California.Mar Biol1125765Google Scholar
  24. 24.
    Lawrence, JE, Chan, AM, Suttle, CA 2002Viruses causing lysis of the toxic bloom-forming alga Heterosigma akashiwo (Raphidophyceae) are widespread in coastal sediments of British Columbia, Canada.Limnol Oceanogr47545550Google Scholar
  25. 25.
    Lee, S, Fuhrman, JA 1987Relationships between biovolume and biomass of naturally derived marine bacterioplankton.Appl Environ Microbiol5312981303Google Scholar
  26. 26.
    Maranger, P, Bird, DF 1996High concentrations of viruses in the sediments of Lake Gilbert, Quebec.Microb Ecol31141151Google Scholar
  27. 27.
    Noble, RT, Fuhrman, JA 2000Rapid virus production and removal measured with fluorescently labeled viruses as tracers.Appl Environ Microbiol6637903797Google Scholar
  28. 28.
    Noble, RT, Fuhrman, JA 1998Use of SYBR Green I rapid epifluorescence counts of marine viruses and bacteria.Aquat Microb Ecol14113118Google Scholar
  29. 29.
    Noble, RT, Fuhrman, JA 1997Virus decay and its causes in coastal waters.Appl Environ Microbiol637783Google Scholar
  30. 30.
    Norkko, A, Hewitt, JE, Thrush, SF, Funnell, GA 2001Benthic–pelagic coupling and suspension-feeding bivalves: linking site-specific sediment flux and biodeposition to benthic community structure.Limnol Oceanogr4620672072Google Scholar
  31. 31.
    Paul, JH, Rose, JB, Jiang, SC, Kellogg, CA, Dickson, L 1993Distribution of viral abundance in the reef environment of Key Largo, Florida.Appl Environ Microbiol59718724PubMedGoogle Scholar
  32. 32.
    Proctor, LM, Fuhrman, JA 1992Mortality of marine bacteria response to enrichments of the virus size fraction from seawater.Mar Ecol Prog Ser87283293Google Scholar
  33. 33.
    Proctor, LM, Fuhrman, JA 1990Viral mortality of marine bacteria and cyanobacteria.Nature3436061CrossRefGoogle Scholar
  34. 34.
    Proctor, LM, Okubo, A, Fuhrman, JA 1993Calibrating estimates of phage-induced mortality in marine bacteria: Ultrastructural studies of marine bacteriophage development from one-step growth experiments.Microb Ecol25161182Google Scholar
  35. 35.
    Roden, EE, Tuttle, JH, Boyton, WR, Kemp, WM 1995Carbon cycling in mesohaline Chesapeake Bay sediments. 1. POC deposition rates and mineralization pathways.J Mar Res53799819Google Scholar
  36. 36.
    Simek, K, Pernthaler, J, Weinbauer, MG, Hornák, K, Dolan, JR, Nedoma, J, Masín, M, Amann, R 2001Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir.Appl Environ Microbiol6727232733CrossRefPubMedGoogle Scholar
  37. 37.
    Sternberg, RW, Berhane, I, Ogston, AS 1999Measurement of size and settling velocity of suspended aggregates on the northern California continental shelf.Mar Geol1544353CrossRefGoogle Scholar
  38. 38.
    Steward, GF, Smith, DC, Azam, F 1996Abundance and production of bacteria and viruses in the Bering and Chukchi Sea.Mar Ecol Prog Ser131287300Google Scholar
  39. 39.
    Steward, GF, Wikner, J, Cochlan, WP, Smith, DC, Azam, F 1992Estimation of virus production in the sea, II: Field results.Mar Microb Food Webs67990Google Scholar
  40. 40.
    Suttle, CA 2000

    Cyanophages and their role in the ecology of cyanobacteria, p. 563–589.

    Potts, M eds. The Ecology of Cyanobacteria, vol. 1.Kluwer AcademicAmsterdam
    Google Scholar
  41. 41.
    Suttle, CA 1994The significance of viruses to mortality in aquatic microbial communities.Microb Ecol28237243Google Scholar
  42. 42.
    Thingstad, TF, Heldal, M, Bratbak, G, Dundas, I 1993Are viruses important partners in pelagic food webs?Trends Evolutionary Ecol8209213CrossRefGoogle Scholar
  43. 43.
    vanDuyl, FC, Bak, RPM, Kop, AJ, Nieuwland, G, Berghuis, EM, Kok, A 1992Mesocosm experiments mimicking seasonal developments of microbial variables in North Sea sediments.Hydrobiologia235267281Google Scholar
  44. 44.
    vanDuyl, FC, deWinder, B, Kop, AJ, Wollenzein, U 1999Tidal coupling between carbohydrate concentrations and bacterial activities in diatom-inhabited intertidal mudflats.Mar Ecol Prog Ser1911932Google Scholar
  45. 45.
    Weinbauer, MG, Peduzzi, P 1995Significance of viruses versus heterotrophic nanoflagellates for controlling bacterial abundance in the northern Adriatic Sea.J Plankton Res1718511856Google Scholar
  46. 46.
    Wilhelm, SW, Bridgen, SM, Suttle, CA 2002A dilution technique for the direct measurement of viral production: A comparison in stratified and tidally mixed coastal waters.Microb Ecol43168173CrossRefPubMedGoogle Scholar
  47. 47.
    Wommack, KE, Colwell, RR 2000Virioplankton: Viruses in aquatic ecosystems.Microbiol Mol Biol Rev6469114CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of Southern California, Los Angeles, CA 90089-0371USA

Personalised recommendations