Advertisement

Pediatric Radiology

, Volume 49, Issue 11, pp 1506–1515 | Cite as

Whole-body magnetic resonance imaging of pediatric cancer predisposition syndromes: special considerations, challenges and perspective

  • Sandra Saade-LemusEmail author
  • Andrew J. Degnan
  • Michael R. Acord
  • Abhay S. Srinivasan
  • Janet R. Reid
  • Sabah E. Servaes
  • Lisa J. States
  • Sudha A. Anupindi
Pediatric oncologic imaging
  • 229 Downloads

Abstract

Cancer predisposition syndromes increase the incidence of tumors during childhood and are associated with significant morbidity and mortality. Imaging is paramount for ensuring early detection of neoplasms, impacting therapeutic interventions and potentially improving outcome. While conventional imaging techniques involve considerable exposure to ionizing radiation, whole-body MRI is a radiation-free modality that allows continuous imaging of the entire body and has increasingly gained relevance in the surveillance, diagnosis, staging and monitoring of pediatric patients with cancer predisposition syndromes. Nevertheless, widespread implementation of whole-body MRI faces several challenges as a screening tool. Some of these challenges include developing clinical indications, variability in protocol specifications, image interpretation as well as coding and billing practices. These factors impact disease management, patient and family experience and research collaborations. In this discussion we review the aforementioned special considerations and the potential direction that might help overcome these challenges and promote more widespread use of whole-body MRI in children with cancer predisposition syndromes.

Keywords

Cancer predisposition syndromes Children Li–Fraumeni syndrome Magnetic resonance imaging Solid tumor Whole-body 

Notes

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Monsalve J, Kapur J, Malkin D, Babyn PS (2011) Imaging of cancer predisposition syndromes in children. Radiographics 31:263–280CrossRefGoogle Scholar
  2. 2.
    Parsons DW, Roy A, Yang Y et al (2016) Diagnostic yield of clinical tumor and germline whole-exome sequencing for children with solid tumors. JAMA Oncol 2:616–624CrossRefGoogle Scholar
  3. 3.
    Ripperger T, Bielack SS, Borkhardt A et al (2017) Childhood cancer predisposition syndromes — a concise review and recommendations by the Cancer predisposition working group of the Society for Pediatric Oncology and Hematology. Am J Med Genet A 173:1017–1037Google Scholar
  4. 4.
    Villani A, Shore A, Wasserman JD et al (2016) Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: 11 year follow-up of a prospective observational study. Lancet Oncol 17:1295–1305CrossRefGoogle Scholar
  5. 5.
    Kratz CP, Achatz MI, Brugieres L et al (2017) Cancer screening recommendations for individuals with Li-Fraumeni syndrome. Clin Cancer Res 23:e38–e45CrossRefGoogle Scholar
  6. 6.
    Kamihara J, Bourdeaut F, Foulkes WD et al (2017) Retinoblastoma and neuroblastoma predisposition and surveillance. Clin Cancer Res 23:e98–e106CrossRefGoogle Scholar
  7. 7.
    Friedman DN, Lis E, Sklar CA et al (2014) Whole-body magnetic resonance imaging (WB-MRI) as surveillance for subsequent malignancies in survivors of hereditary retinoblastoma: a pilot study. Pediatr Blood Cancer 61:1440–1444CrossRefGoogle Scholar
  8. 8.
    Evans DGR, Salvador H, Chang VY et al (2017) Cancer and central nervous system tumor surveillance in pediatric neurofibromatosis 1. Clin Cancer Res 23:e46–e53CrossRefGoogle Scholar
  9. 9.
    Evans DGR, Salvador H, Chang VY et al (2017) Cancer and central nervous system tumor surveillance in pediatric neurofibromatosis 2 and related disorders. Clin Cancer Res 23:e54–e61CrossRefGoogle Scholar
  10. 10.
    Rednam SP, Erez A, Druker H et al (2017) Von Hippel-Lindau and hereditary pheochromocytoma/paraganglioma syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res 23:e68–e75CrossRefGoogle Scholar
  11. 11.
    Jasperson KW, Kohlmann W, Gammon A et al (2014) Role of rapid sequence whole-body MRI screening in SDH-associated hereditary paraganglioma families. Familial Cancer 13:257–265CrossRefGoogle Scholar
  12. 12.
    Tabori U, Hansford JR, Achatz MI et al (2017) Clinical management and tumor surveillance recommendations of inherited mismatch repair deficiency in childhood. Clin Cancer Res 23:e32–e37CrossRefGoogle Scholar
  13. 13.
    Hricak H, Brenner DJ, Adelstein SJ et al (2011) Managing radiation use in medical imaging: a multifaceted challenge. Radiology 258:889–905CrossRefGoogle Scholar
  14. 14.
    Brady Z, Ramanauskas F, Cain TM, Johnston PN (2012) Assessment of paediatric CT dose indicators for the purpose of optimisation. Br J Radiol 85:1488–1498CrossRefGoogle Scholar
  15. 15.
    Smith EA, Dillman JR (2016) Current role of body MRI in pediatric oncology. Pediatr Radiol 46:873–880CrossRefGoogle Scholar
  16. 16.
    Nievelstein RA, Littooij AS (2016) Whole-body MRI in paediatric oncology. Radiol Med 121:442–453CrossRefGoogle Scholar
  17. 17.
    Atkin KL, Ditchfield MR (2014) The role of whole-body MRI in pediatric oncology. J Pediatr Hematol Oncol 36:342–352CrossRefGoogle Scholar
  18. 18.
    Chavhan GB, Babyn PS (2011) Whole-body MR imaging in children: principles, technique, current applications, and future directions. Radiographics 31:1757–1772CrossRefGoogle Scholar
  19. 19.
    Anupindi SA, Bedoya MA, Lindell RB et al (2015) Diagnostic performance of whole-body MRI as a tool for cancer screening in children with genetic cancer-predisposing conditions. AJR Am J Roentgenol 205:400–408CrossRefGoogle Scholar
  20. 20.
    Greer MC (2018) Imaging of cancer predisposition syndromes. Pediatr Radiol 48:1364–1375CrossRefGoogle Scholar
  21. 21.
    Gottumukkala RV, Gee MS, Hampilos PJ, Greer MC (2019) Current and emerging roles of whole-body MRI in evaluation of pediatric cancer patients. Radiographics 39:516–534CrossRefGoogle Scholar
  22. 22.
    Greer MC, Voss SD, States LJ (2017) Pediatric cancer predisposition imaging: focus on whole-body MRI. Clin Cancer Res 23:e6–e13CrossRefGoogle Scholar
  23. 23.
    Anupindi SA (2019) Imaging of children with cancer predisposition. In: Voss S (ed) Imaging in pediatric oncology. Springer International Publishing, BaselGoogle Scholar
  24. 24.
    Villani A, Tabori U, Schiffman J et al (2011) Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: a prospective observational study. Lancet Oncol 12:559–567CrossRefGoogle Scholar
  25. 25.
    Ballinger ML, Best A, Mai PL et al (2017) Baseline surveillance in Li-Fraumeni syndrome using whole-body magnetic resonance imaging: a meta-analysis. JAMA Oncol 3:1634–1639CrossRefGoogle Scholar
  26. 26.
    Ballinger ML, Ferris NJ, Moodie K et al (2017) Surveillance in germline TP53 mutation carriers utilizing whole-body magnetic resonance imaging. JAMA Oncol 3:1735–1736CrossRefGoogle Scholar
  27. 27.
    Vutskits L, Davidson A (2017) Update on developmental anesthesia neurotoxicity. Curr Opin Anaesthesiol 30:337–342CrossRefGoogle Scholar
  28. 28.
    Malkin D, Nichols KE, Schiffman JD et al (2017) The future of surveillance in the context of cancer predisposition: through the murky looking glass. Clin Cancer Res 23:e133–e137CrossRefGoogle Scholar
  29. 29.
    Schooler GR, Davis JT, Daldrup-Link HE, Frush DP (2018) Current utilization and procedural practices in pediatric whole-body MRI. Pediatr Radiol 48:1101–1107CrossRefGoogle Scholar
  30. 30.
    Kornaczewski ER, Pointon OP, Burgess JR (2016) Utility of FDG-PET imaging in screening for succinate dehydrogenase B and D mutation-related lesions. Clin Endocrinol 85:172–179CrossRefGoogle Scholar
  31. 31.
    Lauenstein TC, Freudenberg LS, Goehde SC et al (2002) Whole-body MRI using a rolling table platform for the detection of bone metastases. Eur Radiol 12:2091–2099CrossRefGoogle Scholar
  32. 32.
    Mohan S, Moineddin R, Chavhan GB (2015) Pediatric whole-body magnetic resonance imaging: intra-individual comparison of technical quality, artifacts, and fixed structure visibility at 1.5 and 3 T. Indian J Radiol Imaging 25:353–358CrossRefGoogle Scholar
  33. 33.
    Schmidt G, Dinter D, Reiser MF, Schoenberg SO (2010) The uses and limitations of whole-body magnetic resonance imaging. Dtsch Arztebl Int 107:383–389PubMedPubMedCentralGoogle Scholar
  34. 34.
    Kellenberger CJ, Epelman M, Miller SF, Babyn PS (2004) Fast STIR whole-body MR imaging in children. Radiographics 24:1317–1330CrossRefGoogle Scholar
  35. 35.
    Krohmer S, Sorge I, Krausse A et al (2010) Whole-body MRI for primary evaluation of malignant disease in children. Eur J Radiol 74:256–261CrossRefGoogle Scholar
  36. 36.
    Chung CY, Alson MD, Duszak R Jr, Degnan AJ (2018) From imaging to reimbursement: what the pediatric radiologist needs to know about health care payers, documentation, coding and billing. Pediatr Radiol 48:904–914CrossRefGoogle Scholar
  37. 37.
    Degnan AJ, Alson MD, Duszak R Jr (2019) Variability in billing practices for whole-body magnetic resonance imaging. Pediatr Radiol 49:153CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of RadiologyThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations