Subperiosteal new bone formation with the distal tibial classic metaphyseal lesion: prevalence on radiographic skeletal surveys

  • Andy TsaiEmail author
  • Susan A. Connolly
  • Kirsten Ecklund
  • Patrick R. Johnston
  • Paul K. Kleinman
Original Article



The classic metaphyseal lesion (CML) is a strong indicator of infant abuse, and the distal tibia is one of the most common sites for this injury.


To determine the prevalence of subperiosteal new bone formation accompanying the distal tibial CMLs identified on infant skeletal surveys.

Materials and methods

Skeletal surveys performed for suspected infant abuse (2005–2017) were reviewed. Inclusion criteria were 1) anteroposterior (AP) and lateral radiographs of a distal tibial CML from the initial survey, 2) AP radiograph from the 2-week follow-up survey, 3) additional fractures, 4) child protection team consults and 5) mandated report filing for suspected abuse. We identified 22 distal tibial CMLs from 16 infants. Radiographs of these lesions were shown on the picture archiving and communication system to two blinded pediatric radiologists. Readers indicated the presence/absence of subperiosteal new bone formation on individual and combinations of images.


Inter-reader agreements were fair (kappa=0.47). The prevalence of subperiosteal new bone formation on initial AP radiograph was 34%. Significant increases in the prevalence were found with the addition of follow-up AP radiograph (57%; P<0.001), initial lateral radiograph (57%; P=0.002) and follow-up AP plus initial lateral radiographs (71%; P<0.001). Statistically significant increases in prevalence were also noted when the third view was added to the other two views (increase of 14%; P=0.024).


Even when skeletal surveys include initial AP, lateral and follow-up AP radiographs of the tibia, nearly one-third of distal tibial CMLs will fail to demonstrate subperiosteal new bone formation.


Child abuse Classic metaphyseal lesion Infants Radiography Skeletal survey Subperiosteal new bone formation 


Compliance with ethical standards

Conflicts of interest



  1. 1.
    Kleinman PK, Perez-Rossello JM, Newton AW et al (2011) Prevalence of the classic metaphyseal lesion in infants at low versus high risk for abuse. AJR Am J Roentgenol 197:1005–1008CrossRefGoogle Scholar
  2. 2.
    Strouse PJ, Boal DKB (2013) Child abuse. In: Coley BD (ed) Caffey’s pediatric diagnostic imaging, 12th edn. Elsevier, Philadelphia, pp 1587–1598Google Scholar
  3. 3.
    Flaherty EG, Perez-Rossello JM, Levine MA et al (2014) Evaluating children with fractures for child physical abuse. Pediatrics 133:e477–e489CrossRefGoogle Scholar
  4. 4.
    Lindberg DM, Berger RP, Reynolds MS et al (2014) Yield of skeletal survey by age in children referred to abuse specialists. J Pediatr 164:1268–1273CrossRefGoogle Scholar
  5. 5.
    Servaes S, Brown SD, Choudhary AK et al (2016) The etiology and significance of fractures in infants and young children: a critical multidisciplinary review. Pediatr Radiol 46:591–600CrossRefGoogle Scholar
  6. 6.
    Halliday KE, Broderick NJ, Somers JM, Hawkes R (2011) Dating fractures in infants. Clin Radiol 66:1049–1054CrossRefGoogle Scholar
  7. 7.
    Kleinman PK, Rosenberg AE, Tsai A (2015) Skeletal trauma: general considerations. In: Kleinman PK (ed) Diagnostic imaging of child abuse, 3rd edn. Cambridge University Press, United Kingdom, pp 23–52CrossRefGoogle Scholar
  8. 8.
    Barber I, Perez-Rossello JM, Wilson CR, Kleinman PK (2015) The yield of high-detail radiographic skeletal surveys in suspected infant abuse. Pediatr Radiol 45:69–80CrossRefGoogle Scholar
  9. 9.
    Kleinman PK, Marks SC, Blackbourne B (1986) The metaphyseal lesion in abused infants: a radiologic histopathologic study. AJR Am J Roentgenol 146:896–905CrossRefGoogle Scholar
  10. 10.
    Tsai A, McDonald AG, Rosenberg AE et al (2014) High-resolution CT with histopathological correlates of the classic metaphyseal lesion of infant abuse. Pediatr Radiol 44:124–140CrossRefGoogle Scholar
  11. 11.
    Cumming WA (1979) Neonatal skeletal fractures. Birth trauma or child abuse? J Can Assoc Radiol 30:30–33PubMedGoogle Scholar
  12. 12.
    Malone CA, Sauer NJ, Fenton TW (2011) A radiographic assessment of pediatric fracture healing and time since injury. J Forensic Sci 56:1123–1130CrossRefGoogle Scholar
  13. 13.
    Prosser I, Lawson Z, Evans A et al (2012) A timetable for the radiologic features of fracture healing in young children. AJR Am J Roentgenol 198:1014–1020CrossRefGoogle Scholar
  14. 14.
    Sanchez TR, Nguyen H, Palacios W et al (2013) Retrospective evaluation and dating of non-accidental rib fractures in infants. Clin Radiol 68:467–471CrossRefGoogle Scholar
  15. 15.
    Walters MM, Forbes PW, Buonomo C, Kleinman PK (2014) Healing patterns of clavicular birth injuries as a guide to fracture dating in cases of possible infant abuse. Pediatr Radiol 44:1224–1229CrossRefGoogle Scholar
  16. 16.
    Hosokawa T, Yamada Y, Sato Y et al (2017) Subperiosteal new bone and callus formations in neonates with femoral shaft fracture at birth. Emerg Radiol 24:143–148CrossRefGoogle Scholar
  17. 17.
    Kleinman PK, Marks SCJ, Richmond JM, Blackbourne BD (1995) Inflicted skeletal injury: a postmortem radiologic-histopathologic study in 31 infants. AJR Am J Roentgenol 165:647–650CrossRefGoogle Scholar
  18. 18.
    Kleinman PK, Marks SCJ (1996) A regional approach to classic metaphyseal lesions in abused infants: the distal tibia. AJR Am J Roentgenol 166:1207–1212CrossRefGoogle Scholar
  19. 19.
    American College of Radiology (2016) ACR-SPR practice parameters for the performance and interpretation of skeletal surveys in children. In: American College of Radiology. ACR standards. American College of Radiology, Reston, pp 1–9Google Scholar
  20. 20.
    Shopfner CE (1966) Periosteal bone growth in normal infants: a preliminary report. Am J Roentgenol Radium Ther Nucl Med 97:154–163CrossRefGoogle Scholar
  21. 21.
    Cicchetti DV (1994) Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess 6:284–290CrossRefGoogle Scholar
  22. 22.
    Tsai A, Johnston PR, Perez-Rossello JM et al (2018) The distal tibial classic metaphyseal lesion: medial versus lateral cortical injury. Pediatr Radiol 48:973–978CrossRefGoogle Scholar
  23. 23.
    Dwek JR (2010) The periosteum: what is it, where is it, and what mimics it in its absence? Skeletal Radiol 39:319–232CrossRefGoogle Scholar
  24. 24.
    Caffey J (1957) Some traumatic lesions in growing bones other than fractures and dislocations: clinical and radiological features: the Mackenzie Davidson memorial lecture. Br J Radiol 30:225–238CrossRefGoogle Scholar
  25. 25.
    Ogden JA (2000) Biology of repair of the immature skeleton. In: Ogden JA (ed) Skeletal injury in the child, 3rd edn. Springer-Verlag, New York, pp 243–268Google Scholar
  26. 26.
    Islam O, Soboleski D, Symons S et al (2000) Development and duration of radiographic signs of bone healing in children. AJR Am J Roentgenol 175:75–78CrossRefGoogle Scholar
  27. 27.
    Sty J, Starshak R (1983) The role of bone scintigraphy in the evaluation of the suspected abused child. Radiology 146:369–375CrossRefGoogle Scholar
  28. 28.
    Jaudes PK (1984) Comparison of radiography and radionuclide bone scanning in the detection of child abuse. Pediatrics 73:166–168PubMedGoogle Scholar
  29. 29.
    Conway JJ, Collins M, Tanz RR et al (1993) The role of bone scintigraphy in detecting child abuse. Semin Nucl Med 23:321–333CrossRefGoogle Scholar
  30. 30.
    Mandelstam SA, Cook D, Fitzgerald M, Ditchfield MR (2003) Complementary use of radiological skeletal survey and bone scintigraphy in detection of bony injuries in suspected child abuse. Arch Dis Child 88:387–390CrossRefGoogle Scholar
  31. 31.
    Bainbridge JK, Huey BM, Harrison SK (2015) Should bone scintigraphy be used as a routine adjunct to skeletal survey in the imaging of non-accidental injury? A 10 year review of reports in a single centre. Clin Radiol 70:e83–e89CrossRefGoogle Scholar
  32. 32.
    Eltermann T, Beer M, Girschick HJ (2007) Magnetic resonance imaging in child abuse. J Child Neurol 22:170–175CrossRefGoogle Scholar
  33. 33.
    Sanchez TR, Jadhav SP, Swischuk LE (2009) MR imaging of pediatric trauma. Magn Reson Imaging Clin N Am 17:439–450CrossRefGoogle Scholar
  34. 34.
    Harper NS, Lewis T, Eddleman S et al (2016) Follow-up skeletal survey use by child abuse pediatricians. Child Abuse Negl 51:336–342CrossRefGoogle Scholar
  35. 35.
    Offiah AC, Adamsbaum C, van Rijn RR (2014) ESPR adopts British guidelines for imaging in suspected non-accidental injury as the European standard. Pediatr Radiol 44:1338CrossRefGoogle Scholar
  36. 36.
    Karmazyn B, Duhn RD, Jennings SG et al (2012) Long bone fracture detection in suspected child abuse: contribution of lateral views. Pediatr Radiol 42:463–469CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of RadiologyBoston Children’s HospitalBostonUSA

Personalised recommendations