Pediatric Radiology

, Volume 48, Issue 10, pp 1432–1440 | Cite as

Can diffusion weighting replace gadolinium enhancement in magnetic resonance enterography for inflammatory bowel disease in children?

  • Farah Khachab
  • Anderson Loundou
  • Céline Roman
  • Nathalie Colavolpe
  • Audrey Aschero
  • Brigitte Bourlière-Najean
  • Nassima Daidj
  • Catherine Desvignes
  • Harmony Pico
  • Guillaume Gorincour
  • Pascal Auquier
  • Philippe PetitEmail author
Original Article



Contrast-enhanced MRI is often used for diagnosis and follow-up of children with inflammatory bowel disease.


To compare the accuracy of diffusion-weighted MRI (DWI) to contrast-enhanced MRI in children with known or suspected inflammatory bowel disease.

Materials and methods

This retrospective, consecutive study included 55 children. We used ileo-colonoscopy and histology as the reference standard from the terminal ileum to the rectum, and contrast-enhanced MRI as the reference standard proximal to the terminal ileum. DWI and contrast-enhanced MRI sequences were independently reviewed and compared per patient and per segment to these reference standards and to the follow-up for each child.


We obtained endoscopic data for 340/385 colonic and ileal segments (88%). The rate of agreement per segment between DWI and endoscopy was 64%, and the rate of agreement between contrast-enhanced MRI and endoscopy was 59%. Per patient, sensitivity and specificity of bowel wall abnormalities as compared to the endoscopy were 87% and 100% for DWI, and 70% and 100% for contrast-enhanced MRI, respectively. Positive and negative predictive values were, respectively, 100% and 57% for DWI, and 96% and 41% for contrast-enhanced MRI. The sensitivity, specificity, positive predictive value, negative predictive value and accuracy of DWI compare to contrast-enhanced MRI in the segments proximal to the terminal ileum were 90%, 98%, 90%, 98% and 96%, respectively.


The diagnostic performance of DWI is competitive to that of contrast-enhanced MRI in children with known or suspected inflammatory bowel disease.


Adolescent Children Contrast-enhancement Diffusion-weighted imaging Gadolinium Inflammatory bowel diseases Magnetic resonance imaging 


Compliance with ethical standards

Conflicts of interest



  1. 1.
    Laghi A, Borrelli O, Paolantonio P et al (2003) Contrast-enhanced magnetic resonance imaging of the terminal ileum in children with Crohn’s disease. Gut 52:393–397CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Paolantonio P, Ferrari R, Vecchietti F et al (2009) Current status of MR imaging in the evaluation of IBD in a pediatric population of patients. Eur J Radiol 69:418–424CrossRefPubMedGoogle Scholar
  3. 3.
    Absah I, Bruining DH, Matsumoto JM et al (2012) MR enterography in pediatric inflammatory bowel disease: retrospective assessment of patient tolerance, image quality, and initial performance estimates. AJR Am J Roentgenol 199:W367–W375CrossRefPubMedGoogle Scholar
  4. 4.
    Martin DR, Lauenstein T, Sitaraman SV (2007) Utility of magnetic resonance imaging in small bowel Crohn’s disease. Gastroenterology 133:385–390CrossRefPubMedGoogle Scholar
  5. 5.
    Ramalho M, Herédia V, Cardoso C et al (2012) Magnetic resonance imaging of small bowel Crohn’s disease. Acta Medica Port 25:231–240Google Scholar
  6. 6.
    Maccioni F, Al Ansari N, Mazzamurro F et al (2014) Detection of Crohn disease lesions of the small and large bowel in pediatric patients: diagnostic value of MR enterography versus reference examinations. AJR Am J Roentgenol 203:W533–W542CrossRefPubMedGoogle Scholar
  7. 7.
    Makanyanga JC, Taylor SA (2013) Current and future role of MR enterography in the management of Crohn disease. AJR Am J Roentgenol 201:56–64CrossRefPubMedGoogle Scholar
  8. 8.
    Mentzel H-J, Reinsch S, Kurzai M, Stenzel M (2014) Magnetic resonance imaging in children and adolescents with chronic inflammatory bowel disease. World J Gastroenterol 20:1180–1191CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Dillman JR, Smith EA, Khalatbari S, Strouse PJ (2013) I.V. glucagon use in pediatric MR enterography: effect on image quality, length of examination, and patient tolerance. AJR Am J Roentgenol 201:185–189CrossRefPubMedGoogle Scholar
  10. 10.
    Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE (2007) Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology 242:647–649CrossRefPubMedGoogle Scholar
  11. 11.
    Roberts DR, Holden KR (2016) Progressive increase of T1 signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images in the pediatric brain exposed to multiple doses of gadolinium contrast. Brain Dev 38:331–336CrossRefPubMedGoogle Scholar
  12. 12.
    Choi SH, Kim KW, Lee JY et al (2016) Diffusion-weighted magnetic resonance enterography for evaluating bowel inflammation in Crohn’s disease: a systematic review and meta-analysis. Inflamm Bowel Dis 22:669–679CrossRefPubMedGoogle Scholar
  13. 13.
    Oussalah A, Laurent V, Bruot O et al (2010) Diffusion-weighted magnetic resonance without bowel preparation for detecting colonic inflammation in inflammatory bowel disease. Gut 59:1056–1065CrossRefPubMedGoogle Scholar
  14. 14.
    Seo N, Park SH, Kim K-J et al (2015) MR enterography for the evaluation of small-bowel inflammation in Crohn disease by using diffusion-weighted imaging without intravenous contrast material: a prospective noninferiority study. Radiology 278:762–772CrossRefPubMedGoogle Scholar
  15. 15.
    Hordonneau C, Buisson A, Scanzi J et al (2014) Diffusion-weighted magnetic resonance imaging in ileocolonic Crohn’s disease: validation of quantitative index of activity. Am J Gastroenterol 109:89–98CrossRefPubMedGoogle Scholar
  16. 16.
    Oto A, Zhu F, Kulkarni K et al (2009) Evaluation of diffusion-weighted MR imaging for detection of bowel inflammation in patients with Crohn’s disease. Acad Radiol 16:597–603CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Dubron C, Avni F, Boutry N et al (2016) Prospective evaluation of free-breathing diffusion-weighted imaging for the detection of inflammatory bowel disease with MR enterography in childhood population. Br J Radiol 89:20150840CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Neubauer H, Pabst T, Dick A et al (2013) Small-bowel MRI in children and young adults with Crohn disease: retrospective head-to-head comparison of contrast-enhanced and diffusion-weighted MRI. Pediatr Radiol 43:103–114CrossRefPubMedGoogle Scholar
  19. 19.
    Sirin S, Kathemann S, Schweiger B et al (2015) Magnetic resonance colonography including diffusion-weighted imaging in children and adolescents with inflammatory bowel disease: do we really need intravenous contrast? Investig Radiol 50:32–39CrossRefGoogle Scholar
  20. 20.
    Shenoy-Bhangle AS, Nimkin K, Aranson T, Gee MS (2016) Value of diffusion-weighted imaging when added to magnetic resonance enterographic evaluation of Crohn disease in children. Pediatr Radiol 46:34–42CrossRefPubMedGoogle Scholar
  21. 21.
    Dillman JR, Smith EA, Sanchez R et al (2016) DWI in pediatric small-bowel Crohn disease: are apparent diffusion coefficients surrogates for disease activity in patients receiving infliximab therapy? AJR Am J Roentgenol 207:1002–1008CrossRefPubMedGoogle Scholar
  22. 22.
    Oto A, Kayhan A, Williams JTB et al (2011) Active Crohn’s disease in the small bowel: evaluation by diffusion weighted imaging and quantitative dynamic contrast enhanced MR imaging. J Magn Reson Imaging 33:615–624CrossRefPubMedGoogle Scholar
  23. 23.
    Kiryu S, Dodanuki K, Takao H et al (2009) Free-breathing diffusion-weighted imaging for the assessment of inflammatory activity in Crohn’s disease. J Magn Reson Imaging 29:880–886CrossRefPubMedGoogle Scholar
  24. 24.
    Levine A, Koletzko S, Turner D et al (2014) ESPGHAN revised Porto criteria for the diagnosis of inflammatory bowel disease in children and adolescents. J Pediatr Gastroenterol Nutr 58:795–806PubMedGoogle Scholar
  25. 25.
    IBD Working Group of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition (2005) Inflammatory bowel disease in children and adolescents: recommendations for diagnosis -- the Porto criteria. J Pediatr Gastroenterol Nutr 41:1–7CrossRefGoogle Scholar
  26. 26.
    Lee SS, Kim AY, Yang S-K et al (2009) Crohn disease of the small bowel: comparison of CT enterography, MR enterography, and small-bowel follow-through as diagnostic techniques. Radiology 251:751–761CrossRefPubMedGoogle Scholar
  27. 27.
    Gallego JC, Echarri AI, Porta A, Ollero V (2011) Ileal Crohn’s disease: MRI with endoscopic correlation. Eur J Radiol 80:e8–e12CrossRefPubMedGoogle Scholar
  28. 28.
    Chalian M, Ozturk A, Oliva-Hemker M et al (2011) MR enterography findings of inflammatory bowel disease in pediatric patients. AJR Am J Roentgenol 196:W810–W816CrossRefPubMedGoogle Scholar
  29. 29.
    Leyendecker JR, Bloomfeld RS, DiSantis DJ et al (2009) MR enterography in the management of patients with Crohn disease. Radiographics 29:1827–1846CrossRefPubMedGoogle Scholar
  30. 30.
    Hawass NE (1997) Comparing the sensitivities and specificities of two diagnostic procedures performed on the same group of patients. Br J Radiol 70:360–366CrossRefPubMedGoogle Scholar
  31. 31.
    van de Schoot R, Kaplan D, Denissen J et al (2014) A gentle introduction to Bayesian analysis: applications to developmental research. Child Dev 85:842–860CrossRefPubMedGoogle Scholar
  32. 32.
    Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS—A Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 10:325–337CrossRefGoogle Scholar
  33. 33.
    R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria http://wwwR-projectorg. Accessed 26 Apr 2018
  34. 34.
    Sturtz S, Ligges U, Gelman AE et al (2005) R2WinBUGS: a package for running WinBUGS from R. J Stat Softw 12:1–16CrossRefGoogle Scholar
  35. 35.
    Taylor SA, Avni F, Cronin CG et al (2017) The first joint ESGAR/ESPR consensus statement on the technical performance of cross-sectional small bowel and colonic imaging. Eur Radiol 27:2570–2582CrossRefPubMedGoogle Scholar
  36. 36.
    Grand DJ, Beland MD, Machan JT, Mayo-Smith WW (2012) Detection of Crohn’s disease: comparison of CT and MR enterography without anti-peristaltic agents performed on the same day. Eur J Radiol 81:1735–1741CrossRefPubMedGoogle Scholar
  37. 37.
    Park SH, Huh J, Park SH et al (2016) Diffusion-weighted MR enterography for evaluating Crohn’s disease: effect of anti-peristaltic agent on the diagnosis of bowel inflammation. Eur Radiol 27:2554–2562CrossRefPubMedGoogle Scholar
  38. 38.
    Dohan A, Taylor S, Hoeffel C et al (2016) Diffusion-weighted MRI in Crohn’s disease: current status and recommendations. J Magn Reson Imaging 44:1381–1396CrossRefPubMedGoogle Scholar
  39. 39.
    Sohn B, Kim M-J, Koh H et al (2014) Intestinal lesions in pediatric Crohn disease: comparative detectability among pulse sequences at MR enterography. Pediatr Radiol 44:821–830CrossRefPubMedGoogle Scholar
  40. 40.
    Dillman JR, Ladino-Torres MF, Adler J et al (2011) Comparison of MR enterography and histopathology in the evaluation of pediatric Crohn disease. Pediatr Radiol 41:1552–1558Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Farah Khachab
    • 1
  • Anderson Loundou
    • 2
  • Céline Roman
    • 3
  • Nathalie Colavolpe
    • 1
  • Audrey Aschero
    • 1
  • Brigitte Bourlière-Najean
    • 1
  • Nassima Daidj
    • 1
  • Catherine Desvignes
    • 1
  • Harmony Pico
    • 1
  • Guillaume Gorincour
    • 1
  • Pascal Auquier
    • 2
  • Philippe Petit
    • 1
    Email author
  1. 1.Pediatric Radiology Department, Hopital de la TimoneAssistance Publique des Hopitaux de MarseilleMarseille Cedex 5, MarseilleFrance
  2. 2.Public Health Department, Hopital de la TimoneAssistance Publique des Hopitaux de MarseilleMarseilleFrance
  3. 3.Pediatric Gastroenterology Department, Hopital de la TimoneAssistance Publique des Hopitaux de MarseilleMarseilleFrance

Personalised recommendations