Advertisement

Pediatric Radiology

, Volume 48, Issue 8, pp 1113–1122 | Cite as

Developing a reference MRI database for temporomandibular joints in healthy children and adolescents

  • Thitiporn Junhasavasdikul
  • Aryan Abadeh
  • Mirkamal Tolend
  • Andrea S. Doria
Original Article

Abstract

Background

Recognition of normal temporomandibular joints (TMJs) is essential to assess arthropathic changes. Few, if any, prior studies have evaluated the morphological appearance of growing TMJs by magnetic resonance (MR) examinations in the pediatric population.

Objective

This study aimed to determine normative osseous appearance of growing TMJs according to age and gender, both qualitatively and quantitatively, concerning structural and bone marrow changes.

Materials and methods

From 1,036 MR scans screened, one joint was included from each of 157 patients (76% female; 2–18 years) presenting with at least one normal-appearing TMJ was included. Quantitatively, mandibular condyle was characterized by measuring the following: (i) head-neck angle, (ii) anteversion angle, (iii) condylar dimensions (mediolateral, craniocaudal and anteroposterior [AP]) and (iv) condylar volume. Furthermore, qualitative categorization of condylar shape, into one of three types, and condylar bone marrow type was performed.

Results

The head-neck angle significantly correlated with age (bivariable regression β =0.60, P<0.001), indicating an increase of 1.6 degrees per year. Except for AP diameter of condyles, all other mandibular dimensions and condylar volume increased with age (β =0.20–0.59, P≤0.001–0.004). Significant age difference was observed among the different condylar shapes (P<0.001), indicating a change from rounded head without anterior tilt to rectangular head with anterior tilt. Lastly, mandibular condylar size, measured by volume and by AP and mediolateral dimensions, appeared larger in males.

Conclusion

The morphology of the mandibular condyles changes with age. During development, the shape of the condyles changes from round to rectangular in contour with the development of the anterior condylar tilt, as measured by the head-neck angle.

Keywords

Children Mandible Magnetic resonance imaging Morphology Normal Qualitative assessment Quantitative assessment Temporomandibular joint 

Notes

Acknowledgements

This work was presented at the 60th Annual Meeting and Categorical Course of the Society for Pediatric Radiology in Vancouver, BC, Canada, on May 18, 2017.

We would like to thank Dr. Lynn Spiegel, Rheumatology Department, The Hospital for Sick Children, for providing relevant clinical information.

Compliance with ethical standards

Conflicts of interest

None

Supplementary material

247_2018_4142_MOESM1_ESM.doc (364 kb)
ESM 1 (DOC 364 kb)

References

  1. 1.
    Ringold S, Cron RQ (2009) The temporomandibular joint in juvenile idiopathic arthritis: frequently used and frequently arthritic. Pediatr Rheumatol Online J 7:11Google Scholar
  2. 2.
    Billiau AD, Hu Y, Verdonck A et al (2007) Temporomandibular joint arthritis in juvenile idiopathic arthritis: prevalence, clinical and radiological signs, and relation to dentofacial morphology. J Rheumatol 34:1925–1933PubMedGoogle Scholar
  3. 3.
    Larheim TA, Hoyeraal HM, Stabrun AE et al (1982) The temporomandibular joint in juvenile rheumatoid arthritis. Radiographic changes related to clinical and laboratory parameters in 100 children. Scand J Rheumatol 11:5–12CrossRefPubMedGoogle Scholar
  4. 4.
    Koos B, Twilt M, Kyank U et al (2014) Reliability of clinical symptoms in diagnosing temporomandibular joint arthritis in juvenile idiopathic arthritis. J Rheumatol 41:1871–1877CrossRefPubMedGoogle Scholar
  5. 5.
    Fjeld MG, Arvidsson LZ, Smith HJ et al (2010) Relationship between disease course in the temporomandibular joints and mandibular growth rotation in patients with juvenile idiopathic arthritis followed from childhood to adulthood. Pediatr Rheumatol Online J 8:13Google Scholar
  6. 6.
    Larheim TA, Haanaes HR (1981) Micrognathia, temporomandibular joint changes and dental occlusion in juvenile rheumatoid arthritis of adolescents and adults. Scand J Dent Res 89:329–338PubMedGoogle Scholar
  7. 7.
    Weiss PF, Arabshahi B, Johnson A et al (2008) High prevalence of temporomandibular joint arthritis at disease onset in children with juvenile idiopathic arthritis, as detected by magnetic resonance imaging but not by ultrasound. Arthritis Rheum 58:1189–1196CrossRefPubMedGoogle Scholar
  8. 8.
    Colebatch-Bourn AN, Edwards CJ, Collado P et al (2015) EULAR-PReS points to consider for the use of imaging in the diagnosis and management of juvenile idiopathic arthritis in clinical practice. Ann Rheum Dis 74:1946–1957CrossRefPubMedGoogle Scholar
  9. 9.
    Roth C, Ward RJ, Tsai S et al (2005) MR imaging of the TMJ: a pictorial essay. Apply Radiol 34:9–16Google Scholar
  10. 10.
    Larheim TA, Doria AS, Kirkhus E et al (2015) TMJ imaging in JIA patients-an overview. Semin Orthod 21:102–110CrossRefGoogle Scholar
  11. 11.
    Munir S, Patil K, Miller E et al (2014) Juvenile idiopathic arthritis of the axial joints: a systematic review of the diagnostic accuracy and predictive value of conventional MRI. AJR Am J Roentgenol 202:199–210CrossRefPubMedGoogle Scholar
  12. 12.
    Krisjane Z, Urtane I, Krumina G et al (2007) Condylar and mandibular morphological criteria in the 2D and 3D MSCT imaging for patients with class II division 1 subdivision malocclusion. Stomatologija 9:67–71PubMedGoogle Scholar
  13. 13.
    Sinha VP, Pradhan H, Gupta H et al (2012) Efficacy of plain radiographs, CT scan, MRI and ultrasonography in temporomandibular joint disorders. Natl J Maxillofac Surg 3:2–9CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Angenete OW, Augdal TA, Jellestad S et al (2018) Normal magnetic resonance appearances of the temporomandibular joints in children and young adults aged 2-18 years. Pediatr Radiol 48:341–349CrossRefPubMedGoogle Scholar
  15. 15.
    Vaid YN, Dunnavant FD, Royal SA et al (2014) Imaging of the temporomandibular joint in juvenile idiopathic arthritis. Arthritis Care Res 66:47–54CrossRefGoogle Scholar
  16. 16.
    Kellenberger CJ, Arvidsson LZ, Larheim TA (2015) Magnetic resonance imaging of temporomandibular joints in juvenile idiopathic arthritis. Semin Orthod 21:111–120CrossRefGoogle Scholar
  17. 17.
    Yang ZJ, Song DH, Dong LL et al (2015) Magnetic resonance imaging of temporomandibular joint: morphometric study of asymptomatic volunteers. J Craniofac Surg 26:425–429CrossRefPubMedGoogle Scholar
  18. 18.
    Karlo CA, Stolzmann P, Habernig S et al (2010) Size, shape and age-related changes of the mandibular condyle during childhood. Eur Radiol 20:2512–2517CrossRefPubMedGoogle Scholar
  19. 19.
    Baek SH, Kim TK, Kim MJ (2006) Is there any difference in the condylar osition and angulation after asymmetric mandibular setback? Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101:155–163CrossRefPubMedGoogle Scholar
  20. 20.
    Ha MH, Kim YI, Park SB et al (2013) Cone-beam computed tomographic evaluation of the condylar remodeling occurring after mandibular set-back by bilateral sagittal split ramus osteotomy and rigid fixation. Korean J Orthod 43:263–270CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yamada M, Matsuzaka T, Uetani M et al (1995) Normal age-related conversion of bone marrow in the mandible: MR imaging findings. AJR Am J Roentgenol 165:1223–1228CrossRefPubMedGoogle Scholar
  22. 22.
    Tecco S, Saccucci M, Nucera R et al (2010) Condylar volume and surface in Caucasian young adult subjects. BMC Med Imaging 10:28Google Scholar
  23. 23.
    Saccucci M, D’Attilio M, Rodolfino D et al (2012) Condylar volume and condylar area in class I, class II and class III young adult subjects. Head Face Med 8:34Google Scholar
  24. 24.
    Al-koshab M, Nambiar P, John J (2015) Assessment of condyle and glenoidfossa morphology using CBCT in south-east Asians. PLoS One 10: e0121682Google Scholar
  25. 25.
    Christiansen EL, Chan TT, Thompson JR et al (1987) Computed tomography of the normal temporomandibular joint. Scand J Dent Res 95:499–509PubMedGoogle Scholar
  26. 26.
    Christiansen EL, Thompson JR, Zimmerman G et al (1987) Computed tomography of condylar and articular disk positions within the temporomandibular joint. Oral Surg Oral Med Oral Pathol 64:757–767CrossRefPubMedGoogle Scholar
  27. 27.
    Meng F, Liu Y, Hu K et al (2008) A comparative study of the skeletal morphology of the temporomandibular joint of children and adults. J Postgrad Med 54:191–194CrossRefPubMedGoogle Scholar
  28. 28.
    Ma GMY, Amirabadi A, Inarejos E et al (2015) MRI thresholds for discrimination between normal and mild temporomandibular joint involvement in juvenile idiopathic arthritis. Pediatr Rheumatol Online J 13:53Google Scholar
  29. 29.
    Kottke R, Saurenmann RK, Schneider MM et al (2015) Contrast-enhanced MRI of the temporomandibular joint: findings in children without juvenile idiopathic arthritis. Acta Radiol 56:1145–1152CrossRefPubMedGoogle Scholar
  30. 30.
    Resnick CM, Vakilian PM, Breen M et al (2016) Quantifying temporomandibular joint synovitis in children with juvenile idiopathic arthritis. Arthritis Care Res 68:1795–1802CrossRefGoogle Scholar
  31. 31.
    von Kalle T, Winkler P, Stuber T (2013) Contrast-enhanced MRI of normal temporomandibular joints in children--is there enhancement or not? Rheumatology (Oxford) 52:363–367CrossRefGoogle Scholar
  32. 32.
    von Kalle T, Stuber T, Winkler P et al (2015) Early detection of temporomandibular joint arthritis in children with juvenile idiopathic arthritis - the role of contrast-enhanced MRI. Pediatr Radiol 45:402–410CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Thitiporn Junhasavasdikul
    • 1
    • 2
  • Aryan Abadeh
    • 1
  • Mirkamal Tolend
    • 1
  • Andrea S. Doria
    • 1
    • 3
  1. 1.Department of Medical Imaging, The Hospital for Sick ChildrenUniversity of TorontoTorontoCanada
  2. 2.Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
  3. 3.Research Institute, Peter Gilgan Centre for Research and LearningThe Hospital for Sick ChildrenTorontoCanada

Personalised recommendations