Pediatric Radiology

, Volume 48, Issue 3, pp 308–316 | Cite as

Cone-beam CT in paediatric dentistry: DIMITRA project position statement

  • Anne Caroline Oenning
  • Reinhilde Jacobs
  • Ruben Pauwels
  • Andreas Stratis
  • Mihaela Hedesiu
  • Benjamin Salmon
  • On behalf of the DIMITRA Research Group,


DIMITRA (dentomaxillofacial paediatric imaging: an investigation towards low-dose radiation induced risks) is a European multicenter and multidisciplinary project focused on optimizing cone-beam CT exposures for children and adolescents. With increasing use of cone-beam CT for dentomaxillofacial diagnostics, concern arises regarding radiation risks associated with this imaging modality, especially for children. Research evidence concerning cone-beam CT indications in children remains limited, while reports mention inconsistent recommendations for dose reduction. Furthermore, there is no paper using the combined and integrated information on the required indication-oriented image quality and the related patient dose levels. In this paper, therefore, the authors initiate an integrated approach based on current evidence regarding image quality and dose, together with the expertise of DIMITRA’s members searching for a state of the art. The aim of this DIMITRA position statement is to provide indication-oriented and patient-specific recommendations regarding the main cone-beam CT applications in the pediatric field. The authors will review this position statement document when results regarding multidisciplinary approaches evolve, in a period of 5 years or earlier.


Children Cone-beam computed tomography Guideline Pediatric dentistry Radiation effects Radiation protection 



This work was supported by the European Atomic Energy Community’s Seventh Framework Programme FP7/2007–2011 under grant agreement No. 604984 (OPERRA: Open Project for the European Radiation Research Area).

Compliance with ethical standards

Conflicts of interest



  1. 1.
    White SC, Scarfe WC, Schulze RKW et al (2014) The image gently in dentistry campaign: promotion of responsible use of maxillofacial radiology in dentistry for children. Oral Surg Oral Med Oral Pathol Oral Radiol 118:257–261CrossRefPubMedGoogle Scholar
  2. 2.
    May JJ, Cohenca N, Peters OA (2013) Contemporary management of horizontal root fractures to the permanent dentition: diagnosis — radiologic assessment to include cone-beam computed tomography. J Endod 39:S20–S25CrossRefPubMedGoogle Scholar
  3. 3.
    European Commission (2012) Radiation protection No. 172: Cone beam CT for dental and maxillofacial radiology (evidence-based guidelines). Accessed 6 Oct 2017
  4. 4.
    Kapila S, Conley RS, Harrell WE (2011) The current status of cone beam computed tomography imaging in orthodontics. Dentomaxillofac Radiol 40:24–34CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Jaju PP, Jaju SP (2015) Cone-beam computed tomography: time to move from ALARA to ALADA. Imaging Sci Dent 45:263–265CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Aps JKM (2013) Cone beam computed tomography in paediatric dentistry: overview of recent literature. Eur Arch Paediatr Dent 14:131–140CrossRefPubMedGoogle Scholar
  7. 7.
    Hidalgo-Rivas JA, Theodorakou C, Carmichael F et al (2014) Use of cone beam CT in children and young people in three United Kingdom dental hospitals. Int J Paediatr Dent 24:336–348CrossRefPubMedGoogle Scholar
  8. 8.
    Bushberg JT (2015) Eleventh annual Warren K. Sinclair keynote address — science, radiation protection and NCRP: building on the past, looking to the future. Health Phys 108:115–123CrossRefPubMedGoogle Scholar
  9. 9.
    Theodorakou C, Walker A, Horner K et al (2012) Estimation of paediatric organ and effective doses from dental cone beam CT using anthropomorphic phantoms. Br J Radiol 85:153–160CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ludlow JB, Timothy R, Walker C et al (2015) Effective dose of dental CBCT — a meta-analysis of published data and additional data for nine CBCT units. Dentomaxillofac Radiol 44:20140197CrossRefPubMedGoogle Scholar
  11. 11.
    Lai CS, Suter VGA, Katsaros C et al (2014) Localization of impacted maxillary canines and root resorption of neighbouring teeth: a study assessing the diagnostic value of panoramic radiographs in two groups of observers. Eur J Orthod 36:450–456CrossRefPubMedGoogle Scholar
  12. 12.
    Alqerban A, Jacobs R, van Keirsbilck P-J et al (2014) The effect of using CBCT in the diagnosis of canine impaction and its impact on the orthodontic treatment outcome. J Orthod Sci 3:34–40CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Doğramaci EJ, Sherriff M, Rossi-Fedele G et al (2015) Location and severity of root resorption related to impacted maxillary canines: a cone beam computed tomography (CBCT) evaluation. Aust Orthod J 31:49–58PubMedGoogle Scholar
  14. 14.
    Alqerban A, Jacobs R, Fieuws S et al (2015) Radiographic predictors for maxillary canine impaction. Am J Orthod Dentofac Orthop 147:345–354CrossRefGoogle Scholar
  15. 15.
    Tadinada A, Mahdian M, Vishwanath M et al (2015) Evaluation of alveolar bone dimensions in unilateral palatally impacted canine: a cone-beam computed tomographic analyses. Eur J Orthod 37:596–602CrossRefPubMedGoogle Scholar
  16. 16.
    Kamburoğlu K, Onder B, Murat S et al (2013) Radiographic detection of artificially created horizontal root fracture using different cone beam CT units with small fields of view. Dentomaxillofac Radiol 42:20120261CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fagundes Ddos S, de Mendonça IL, de Albuquerque MT et al (2014) Spontaneous healing responses detected by cone-beam computed tomography of horizontal root fractures: a report of two cases. Dent Traumatol 30:484–487CrossRefPubMedGoogle Scholar
  18. 18.
    Jones D, Mannocci F, Andiappan M et al (2015) The effect of alteration of the exposure parameters of a cone-beam computed tomographic scan on the diagnosis of simulated horizontal root fractures. J Endod 41:520–525CrossRefPubMedGoogle Scholar
  19. 19.
    Lima TF, Gamba TO, Zaia AA et al (2016) Evaluation of cone beam computed tomography and periapical radiography in the diagnosis of root resorption. Aust Dent J 61:425–431CrossRefPubMedGoogle Scholar
  20. 20.
    Kyriakou Y, Kalender WA (2007) X-ray scatter data for flat-panel detector CT. Phys Med 23:3–15CrossRefPubMedGoogle Scholar
  21. 21.
    Aootaphao S, Thongvigitmanee SS, Rajruangrabin J et al (2016) X-ray scatter correction on soft tissue images for portable cone beam CT. Biomed Res Int 2016:3262795Google Scholar
  22. 22.
    Alqerban A, Jacobs R, Fieuws S et al (2011) Comparison of two cone beam computed tomographic systems versus panoramic imaging for localization of impacted maxillary canines and detection of root resorption. Eur J Orthod 33:93–102CrossRefPubMedGoogle Scholar
  23. 23.
    Kullman L, Al Sane M (2012) Guidelines for dental radiography immediately after a dento-alveolar trauma, a systematic literature review. Dent Traumatol 28:193–199CrossRefPubMedGoogle Scholar
  24. 24.
    Flores MT, Andersson L, Andreasen JO et al (2007) Guidelines for the management of traumatic dental injuries. I. Fractures and luxations of permanent teeth. Dent Traumatol 23:66–71CrossRefPubMedGoogle Scholar
  25. 25.
    Bornstein MM, Wölner-Hanssen AB, Sendi P et al (2009) Comparison of intraoral radiography and limited cone beam computed tomography for the assessment of root-fractured permanent teeth. Dent Traumatol 25:571–577CrossRefPubMedGoogle Scholar
  26. 26.
    Cotton TP, Geisler TM, Holden DT et al (2007) Endodontic applications of cone-beam volumetric tomography. J Endod 33:1121–1132CrossRefPubMedGoogle Scholar
  27. 27.
    Kositbowornchai S, Sikram S, Nuansakul R et al (2003) Root fracture detection on digital images: effect of the zoom function. Dent Traumatol 19:154–159CrossRefPubMedGoogle Scholar
  28. 28.
    Owusu JA, Bellile E, Moyer JS et al (2016) Patterns of pediatric mandible fractures in the United States. JAMA Facial Plast Surg 18:37–41CrossRefPubMedGoogle Scholar
  29. 29.
    Emerich K, Wyszkowski J (2010) Clinical practice: dental trauma. Eur J Pediatr 169:1045–1050CrossRefPubMedGoogle Scholar
  30. 30.
    Stavropoulos A, Wenzel A (2007) Accuracy of cone beam dental CT, intraoral digital and conventional film radiography for the detection of periapical lesions. An ex vivo study in pig jaws. Clin Oral Investig 11:101–106CrossRefPubMedGoogle Scholar
  31. 31.
    Lofthag-Hansen S, Huumonen S, Gröndahl K et al (2007) Limited cone-beam CT and intraoral radiography for the diagnosis of periapical pathology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103:114–119CrossRefPubMedGoogle Scholar
  32. 32.
    Andreasen FM, Sewerin I, Mandel U et al (1987) Radiographic assessment of simulated root resorption cavities. Endod Dent Traumatol 3:21–27CrossRefPubMedGoogle Scholar
  33. 33.
    Oenning ACC, de Azevedo Vaz SL, Melo SLS et al (2013) Usefulness of cone-beam CT in the evaluation of a spontaneously healed root fracture case. Dent Traumatol 29:489–493CrossRefPubMedGoogle Scholar
  34. 34.
    Makowiecki P, Witek A, Pol J et al (2014) The maintenance of pulp health 17 years after root fracture in a maxillary incisor illustrating the diagnostic benefits of cone bean computed tomography. Int Endod J 47:889–895CrossRefPubMedGoogle Scholar
  35. 35.
    Kuijpers MAR, Pazera A, Admiraal RJ et al (2014) Incidental findings on cone beam computed tomography scans in cleft lip and palate patients. Clin Oral Investig 18:1237–1244CrossRefPubMedGoogle Scholar
  36. 36.
    Starbuck JM, Ghoneima A, Kula K (2015) Bilateral cleft lip and palate: a morphometric analysis of facial skeletal form using cone beam computed tomography. Clin Anat 28:584–592CrossRefPubMedGoogle Scholar
  37. 37.
    Ercan E, Celikoglu M, Buyuk SK et al (2015) Assessment of the alveolar bone support of patients with unilateral cleft lip and palate: a cone-beam computed tomography study. Angle Orthod 85:1003–1008CrossRefPubMedGoogle Scholar
  38. 38.
    de Rezende Barbosa GL, Wood JS, Pimenta LA et al (2016) Comparison of different methods to assess alveolar cleft defects in cone beam CT images. Dentomaxillofac Radiol 45:20150332CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    de Moura PM, Hallac RR, Seaward JR et al (2016) Objective and subjective image evaluation of maxillary alveolar bone based on cone beam computed tomography exposure parameters. Oral Surg Oral Med Oral Pathol Oral Radiol 121:557–565CrossRefPubMedGoogle Scholar
  40. 40.
    Dissaux C, Bodin F, Grollemund B et al (2016) Evaluation of success of alveolar cleft bone graft performed at 5 years versus 10 years of age. J Craniomaxillofac Surg 44:21–26CrossRefPubMedGoogle Scholar
  41. 41.
    de Rezende Barbosa GL, Emodi O, Pretti H et al (2016) GAND classification and volumetric assessment of unilateral cleft lip and palate malformations using cone beam computed tomography. Int J Oral Maxillofac Surg 45:1333–1340CrossRefGoogle Scholar
  42. 42.
    Celikoglu M, Buyuk SK, Sekerci AE et al (2014) Facial soft-tissue thickness in patients affected by bilateral cleft lip and palate: a retrospective cone-beam computed tomography study. Am J Orthod Dentofac Orthop 146:573–578CrossRefGoogle Scholar
  43. 43.
    Suomalainen A, Åberg T, Rautio J et al (2014) Cone beam computed tomography in the assessment of alveolar bone grafting in children with unilateral cleft lip and palate. Eur J Orthod 36:603–611CrossRefPubMedGoogle Scholar
  44. 44.
    Celikoglu M, Buyuk SK, Sekerci AE et al (2015) Maxillary dental anomalies in patients with cleft lip and palate: a cone beam computed tomography study. J Clin Pediatr Dent 39:183–186CrossRefPubMedGoogle Scholar
  45. 45.
    Celebi AA, Ucar FI, Sekerci AE et al (2015) Effects of cleft lip and palate on the development of permanent upper central incisors: a cone-beam computed tomography study. Eur J Orthod 37:544–549CrossRefPubMedGoogle Scholar
  46. 46.
    Helms JA, Speidel TM, Denis KL (1987) Effect of timing on long-term clinical success of alveolar cleft bone grafts. Am J Orthod Dentofac Orthop 92:232–240CrossRefGoogle Scholar
  47. 47.
    Bergland O, Semb G, Abyholm FE (1986) Elimination of the residual alveolar cleft by secondary bone grafting and subsequent orthodontic treatment. Cleft Palate J 23:175–205PubMedGoogle Scholar
  48. 48.
    Choi HS, Choi HG, Kim SH et al (2012) Influence of the alveolar cleft type on preoperative estimation using 3D CT assessment for alveolar cleft. Arch Plast Surg 39:477–482CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Ludlow JB, Ivanovic M (2008) Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 106:106–114CrossRefPubMedGoogle Scholar
  50. 50.
    Hamada Y, Kondoh T, Noguchi K et al (2005) Application of limited cone beam computed tomography to clinical assessment of alveolar bone grafting: a preliminary report. Cleft Palate Craniofac J 42:128–137CrossRefPubMedGoogle Scholar
  51. 51.
    Sahai S, Kaveriappa S, Arora H et al (2011) 3-D imaging in post-traumatic malformation and eruptive disturbance in permanent incisors: a case report. Dent Traumatol 27:473–477CrossRefPubMedGoogle Scholar
  52. 52.
    Mahesh R, Kanimozhi IG, Sivakumar M (2014) Dilaceration and eruption disturbances in permanent teeth: a sequelae of trauma to their predecessors-diagnosis and treatment using cone beam CT. J Clin Diagn Res 8:ZD10–ZD12Google Scholar
  53. 53.
    Bahadure RN, Thosar N, Khubchandani M (2013) Orthodontic extrusion: diagnosis and treatment with CBCT in a pediatric patient. Gen Dent 61:e5–e7PubMedGoogle Scholar
  54. 54.
    Sun H, Hu R, Ren M et al (2016) The treatment timing of labial inversely impacted maxillary central incisors: a prospective study. Angle Orthod 86:768–774CrossRefPubMedGoogle Scholar
  55. 55.
    Capar ID, Ertas H, Arslan H et al (2015) A retrospective comparative study of cone-beam computed tomography versus rendered panoramic images in identifying the presence, types, and characteristics of dens invaginatus in a Turkish population. J Endod 41:473–478CrossRefPubMedGoogle Scholar
  56. 56.
    Cantín M, Fonseca GM (2013) Dens invaginatus in an impacted mesiodens: a morphological study. Romanian J Morphol Embryol 54:879–884Google Scholar
  57. 57.
    Doğramacı EJ, Rossi-Fedele G, McDonald F (2014) Clinical importance of incidental findings reported on small-volume dental cone beam computed tomography scans focused on impacted maxillary canine teeth. Oral Surg Oral Med Oral Pathol Oral Radiol 118:e205–e209CrossRefPubMedGoogle Scholar
  58. 58.
    Tsodoulos S, Ilia A, Antoniades K et al (2014) Cherubism: a case report of a three-generation inheritance and literature review. J Oral Maxillofac Surg 72:405.e1–9CrossRefPubMedGoogle Scholar
  59. 59.
    Levarek RE, Wiltz MJ, Kelsch RD et al (2014) Surgical management of the buccal bifurcation cyst: bone grafting as a treatment adjunct to enucleation and curettage. J Oral Maxillofac Surg 72:1966–1973CrossRefPubMedGoogle Scholar
  60. 60.
    Jiang M, You M, Wang H et al (2014) Characteristic features of the adenomatoid odontogenic tumour on cone beam CT. Dentomaxillofac Radiol 43:20140016CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    MacDonald D (2016) Lesions of the jaws presenting as radiolucencies on cone-beam CT. Clin Radiol 71:972–985CrossRefPubMedGoogle Scholar
  62. 62.
    Lopes IA, Tucunduva RMA, Handem RH et al (2017) Study of the frequency and location of incidental findings of the maxillofacial region in different fields of view in CBCT scans. Dentomaxillofac Radiol 46:20160215CrossRefPubMedGoogle Scholar
  63. 63.
    Gaia BF, de Sales MAO, Perrella A et al (2011) Comparison between cone-beam and multislice computed tomography for identification of simulated bone lesions. Braz Oral Res 25:362–368CrossRefPubMedGoogle Scholar
  64. 64.
    Pompura JR, Sándor GK, Stoneman DW (1997) The buccal bifurcation cyst: a prospective study of treatment outcomes in 44 sites. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 83:215–221CrossRefPubMedGoogle Scholar
  65. 65.
    Friedrich RE, Scheuer HA, Zustin J (2014) Inflammatory paradental cyst of the first molar (buccal bifurcation cyst) in a 6-year-old boy: case report with respect to immunohistochemical findings. In Vivo 28:333–339PubMedGoogle Scholar
  66. 66.
    Assaf AT, Benecke AW, Riecke B et al (2012) Craniofacial fibrous dysplasia (CFD) of the maxilla in an 11-year old boy: a case report. J Craniomaxillofac Surg 40:788–792CrossRefPubMedGoogle Scholar
  67. 67.
    Shahbazian M, Jacobs R, Wyatt J et al (2010) Accuracy and surgical feasibility of a CBCT-based stereolithographic surgical guide aiding autotransplantation of teeth: in vitro validation. J Oral Rehabil 37:854–859CrossRefPubMedGoogle Scholar
  68. 68.
    Shahbazian M, Jacobs R, Wyatt J et al (2013) Validation of the cone beam computed tomography-based stereolithographic surgical guide aiding autotransplantation of teeth: clinical case-control study. Oral Surg Oral Med Oral Pathol Oral Radiol 115:667–675CrossRefPubMedGoogle Scholar
  69. 69.
    EzEldeen M, Stratis A, Coucke W et al (2016) As low dose as sufficient quality: optimization of cone-beam computed tomographic scanning protocol for tooth autotransplantation planning and follow-up in children. J Endod 43:210–217CrossRefPubMedGoogle Scholar
  70. 70.
    Verweij JP, Jongkees FA, Anssari Moin D et al (2017) Autotransplantation of teeth using computer-aided rapid prototyping of a three-dimensional replica of the donor tooth: a systematic literature review. Int J Oral Maxillofac Surg 46:1466–1474CrossRefPubMedGoogle Scholar
  71. 71.
    Lu H, Zeng B, Yu D et al (2015) Complex dental anomalies in a belatedly diagnosed cleidocranial dysplasia patient. Imaging Sci Dent 45:187–192CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Dalessandri D, Laffranchi L, Tonni I et al (2011) Advantages of cone beam computed tomography (CBCT) in the orthodontic treatment planning of cleidocranial dysplasia patients: a case report. Head Face Med 7:6CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Damasceno JX, Couto JLP, Alves KSDS et al (2014) Generalized odontodysplasia in a 5-year-old patient with Hallermann-Streiff syndrome: clinical aspects, cone beam computed tomography findings, and conservative clinical approach. Oral Surg Oral Med Oral Pathol Oral Radiol 118:e58–e64CrossRefPubMedGoogle Scholar
  74. 74.
    Diniz-Freitas M, Seoane-Romero J, Fernández-Varela M et al (2015) Cone beam computed tomography evaluation of palatal bone thickness for miniscrew placement in Down's syndrome. Arch Oral Biol 60:1333–1339CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Anne Caroline Oenning
    • 1
    • 2
    • 3
  • Reinhilde Jacobs
    • 4
    • 5
  • Ruben Pauwels
    • 4
    • 6
  • Andreas Stratis
    • 4
  • Mihaela Hedesiu
    • 7
  • Benjamin Salmon
    • 1
    • 2
    • 8
  • On behalf of the DIMITRA Research Group,
  1. 1.EA2496, Orofacial Pathologies, Imaging and BiotherapiesDental School Paris Descartes University, Sorbonne Paris CitéMontrougeFrance
  2. 2.Department of OdontologyAP-HP, Nord Val de Seine Hospital (Bretonneau)ParisFrance
  3. 3.Department of Oral Diagnosis, Division of Oral Radiology, Piracicaba Dental SchoolUniversity of Campinas (UNICAMP)PiracicabaBrazil
  4. 4.OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of MedicineUniversity of Leuven and Oral & Maxillofacial Surgery, University Hospitals LeuvenLeuvenBelgium
  5. 5.Department of Dental MedicineKarolinska InstitutetStockholmSweden
  6. 6.Department of Radiology, Faculty of DentistryChulalongkorn UniversityBangkokThailand
  7. 7.Department of Oral Radiology, Faculty of DentistryIuliu Hatieganu University of Medicine and PharmacyCluj-NapocaRomania
  8. 8.Faculté de Chirurgie DentaireUniversité Paris DescartesMontrougeFrance

Personalised recommendations