Advertisement

Pediatric Radiology

, Volume 48, Issue 6, pp 792–800 | Cite as

Imaging of temporomandibular joint abnormalities in juvenile idiopathic arthritis with a focus on developing a magnetic resonance imaging protocol

  • Elka Miller
  • Emilio J. Inarejos Clemente
  • Nikolay Tzaribachev
  • Saurabh Guleria
  • Mirkamal TolendEmail author
  • Arthur B. Meyers
  • Thekla von Kalle
  • Jennifer Stimec
  • Bernd Koos
  • Simone Appenzeller
  • Linda Z. Arvidsson
  • Eva Kirkhus
  • Andrea S. Doria
  • Christian J. Kellenberger
  • Tore A. Larheim
Minisymposium: Juvenile Idiopathic Arthritis

Abstract

Inflammation and damage in the temporomandibular joint (TMJ) often develop without clinical symptoms but can lead to severe facial growth abnormalities and impaired health-related quality of life, making early diagnosis of TMJ changes crucial to identify. Inflammatory and osteochondral changes detectable through magnetic resonance imaging (MRI) occur in TMJs of approximately 40% of children with juvenile idiopathic arthritis (JIA), and no other imaging modality or physical method of examination can reliably detect these changes. Therefore contrast-enhanced MRI is the diagnostic standard for diagnosis and interval monitoring of JIA. However the specific usage of MRI for TMJ arthritis is not standardized at present. There is a recognized need for a consensus effort toward standardization of an imaging protocol with required and optional sequences to improve detection of pathological changes and shorten study time. Such a consensus imaging protocol is important for providing maximum information with minimally necessary sequences in a way that allows inter-site comparison of results of clinical trials and improved clinical management. In this paper we describe the challenges of TMJ imaging and present expert-panel consensus suggestions for a standardized TMJ MRI protocol.

Keywords

Children Imaging protocol Juvenile idiopathic arthritis Magnetic resonance imaging Synovitis Temporomandibular joint 

Notes

Acknowledgments

The authors thank Prof. Yoginder Vaid for his participation and valuable feedback in the initial stages of the consensus imaging protocol development meetings, and also Prof. Karen Rosendahl for her constructive comments to the manuscript. Profs. Kellenberger and Larheim contributed equally as senior authors of this article.

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Manners PJ, Bower C (2002) Worldwide prevalence of juvenile arthritis why does it vary so much? J Rheumatol 29:1520–1530PubMedGoogle Scholar
  2. 2.
    Larheim TA, Doria AS, Kirkhus E et al (2015) TMJ imaging in JIA patients — an overview. Semin Orthod 21:102–110CrossRefGoogle Scholar
  3. 3.
    Cannizzaro E, Schroeder S, Müller LM et al (2011) Temporomandibular joint involvement in children with juvenile idiopathic arthritis. J Rheumatol 38:510–515CrossRefPubMedGoogle Scholar
  4. 4.
    Stoll ML, Sharpe T, Beukelman T et al (2012) Risk factors for temporomandibular joint arthritis in children with juvenile idiopathic arthritis. J Rheumatol 39:1880–1887CrossRefPubMedGoogle Scholar
  5. 5.
    Koos B, Twilt M, Kyank U et al (2014) Reliability of clinical symptoms in diagnosing temporomandibular joint arthritis in juvenile idiopathic arthritis. J Rheumatol 41:1871–1877CrossRefPubMedGoogle Scholar
  6. 6.
    Muller L, Kellenberger CJ, Cannizzaro E et al (2009) Early diagnosis of temporomandibular joint involvement in juvenile idiopathic arthritis: a pilot study comparing clinical examination and ultrasound to magnetic resonance imaging. Rheumatology 48:680–685CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Stoustrup P, Twilt M, Spiegel L et al (2017) Clinical orofacial examination in juvenile idiopathic arthritis: international consensus-based recommendations for monitoring patients in clinical practice and research studies. J Rheumatol 44:326–333CrossRefPubMedGoogle Scholar
  8. 8.
    Frid P, Nordal E, Bovis F et al (2017) Temporomandibular joint involvement in association with quality of life, disability, and high disease activity in juvenile idiopathic arthritis. Arthritis Care Res 69:677–686CrossRefGoogle Scholar
  9. 9.
    El Assar de la Fuente S, Angenete O, Jellestad S et al (2016) Juvenile idiopathic arthritis and the temporomandibular joint: a comprehensive review. J Craniomaxillofac Surg 44:597–607CrossRefPubMedGoogle Scholar
  10. 10.
    Weiss PF, Arabshahi B, Johnson A et al (2008) High prevalence of temporomandibular joint arthritis at disease onset in children with juvenile idiopathic arthritis, as detected by magnetic resonance imaging but not by ultrasound. Arthritis Rheum 58:1189–1196CrossRefPubMedGoogle Scholar
  11. 11.
    Fryback DG, Thornbury JR (1991) The efficacy of diagnostic imaging. Med Decis Mak 11:88–94CrossRefGoogle Scholar
  12. 12.
    Twilt M, Schulten AJM, Verschure F et al (2008) Long-term followup of temporomandibular joint involvement in juvenile idiopathic arthritis. Arthritis Care Res 59:546–552CrossRefGoogle Scholar
  13. 13.
    Arvidsson LZ, Flatø B, Larheim TA (2009) Radiographic TMJ abnormalities in patients with juvenile idiopathic arthritis followed for 27 years. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:114–123Google Scholar
  14. 14.
    Pedersen TK, Jensen JJ, Melsen B et al (2001) Resorption of the temporomandibular condylar bone according to subtypes of juvenile chronic arthritis. J Rheumatol 28:2109–2115PubMedGoogle Scholar
  15. 15.
    Billiau AD, Hu Y, Verdonck A et al (2007) Temporomandibular joint arthritis in juvenile idiopathic arthritis: prevalence, clinical and radiological signs, and relation to dentofacial morphology. J Rheumatol 34:1925–1933PubMedGoogle Scholar
  16. 16.
    Larheim TA, Abrahamsson A-K, Kristensen M et al (2014) Temporomandibular joint diagnostics using CBCT. Dentomaxillofacial Radiol 44:20140235CrossRefGoogle Scholar
  17. 17.
    Farronato G, Garagiola U, Carletti V et al (2010) Change in condylar and mandibular morphology in juvenile idiopathic arthritis: cone beam volumetric imaging. Minerva Stomatol 59:519–534PubMedGoogle Scholar
  18. 18.
    Ferraz AML Jr, Devito KL, Guimarães JP (2012) Temporomandibular disorder in patients with juvenile idiopathic arthritis: clinical evaluation and correlation with the findings of cone beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol 114:e51–e57Google Scholar
  19. 19.
    González MFO, Pedersen TK, Dalstra M et al (2016) 3D evaluation of mandibular skeletal changes in juvenile arthritis patients treated with a distraction splint: a retrospective follow-up. Angle Orthod 86:846–853CrossRefPubMedGoogle Scholar
  20. 20.
    Al-Shwaikh H, Urtane I, Pirttiniemi P et al (2016) Radiologic features of temporomandibular joint osseous structures in children with juvenile idiopathic arthritis. Cone beam computed tomography study. Stomatologija 18:51–60PubMedGoogle Scholar
  21. 21.
    Resnick CM, Dang R, Henderson LA et al (2017) Frequency and morbidity of temporomandibular joint involvement in adult patients with a history of juvenile idiopathic arthritis. J Oral Maxillofac Surg 75:1191–1200CrossRefPubMedGoogle Scholar
  22. 22.
    Karlo CA, Stolzmann P, Habernig S et al (2010) Size, shape and age-related changes of the mandibular condyle during childhood. Eur Radiol 20:2512–2517CrossRefPubMedGoogle Scholar
  23. 23.
    Kirkhus E, Gunderson RB, Smith H-J et al (2016) Temporomandibular joint involvement in childhood arthritis: comparison of ultrasonography-assessed capsular width and MRI-assessed synovitis. Dentomaxillofacial Radiol 45:20160195CrossRefGoogle Scholar
  24. 24.
    Katzberg RW (2012) Is Ultrasonography of the temporomandibular joint ready for prime time? Is there a “window” of opportunity? J Oral Maxillofac Surg 70:1310–1314CrossRefPubMedGoogle Scholar
  25. 25.
    Meyers AB, Oberle EJ (2016) Sonographic evaluation of the temporomandibular joint: uses and limitations. J Ultrasound Med 35:452–453CrossRefPubMedGoogle Scholar
  26. 26.
    Assaf AT, Kahl-Nieke B, Feddersen J et al (2013) Is high-resolution ultrasonography suitable for the detection of temporomandibular joint involvement in children with juvenile idiopathic arthritis? Dentomaxillofacial Radiol 20110379:42Google Scholar
  27. 27.
    Manfredini D, Guarda-Nardini L (2009) Ultrasonography of the temporomandibular joint: a literature review. Int J Oral Maxillofac Surg 38:1229–1236CrossRefPubMedGoogle Scholar
  28. 28.
    Hemke R, van Rossum MAJ, van Veenendaal M et al (2013) Reliability and responsiveness of the juvenile arthritis MRI scoring (JAMRIS) system for the knee. Eur Radiol 23:1075–1083CrossRefPubMedGoogle Scholar
  29. 29.
    Nusman CM, Muller L-SO, Hemke R et al (2016) Current status of efforts on standardizing magnetic resonance imaging of juvenile idiopathic arthritis: report from the OMERACT MRI in JIA Working Group and Health-e-Child. J Rheumatol 43:239–244CrossRefPubMedGoogle Scholar
  30. 30.
    Koos B, Tzaribachev N, Bott S et al (2013) Classification of temporomandibular joint erosion, arthritis, and inflammation in patients with juvenile idiopathic arthritis. J Orofac Orthop Fortschr Kieferorthop 74:506–519CrossRefGoogle Scholar
  31. 31.
    Vaid YN, Dunnavant FD, Royal SA et al (2014) Imaging of the temporomandibular joint in juvenile idiopathic arthritis. Arthritis Care Res 66:47–54CrossRefGoogle Scholar
  32. 32.
    Kellenberger CJ, Arvidsson LZ, Larheim TA (2015) Magnetic resonance imaging of temporomandibular joints in juvenile idiopathic arthritis. Semin Orthod 21:111–120CrossRefGoogle Scholar
  33. 33.
    Lochbühler N, Saurenmann RK, Müller L et al (2015) Magnetic resonance imaging assessment of temporomandibular joint involvement and mandibular growth following corticosteroid injection in juvenile idiopathic arthritis. J Rheumatol 42:1514–1522CrossRefPubMedGoogle Scholar
  34. 34.
    Hauser RA, Schroeder S, Cannizzaro E et al (2014) How important is early magnetic resonance imaging of the temporomandibular joint for the treatment of children with juvenile idiopathic arthritis: a retrospective analysis. Pediatr Rheumatol 12:36CrossRefGoogle Scholar
  35. 35.
    Bucheli J, Ettlin D, Kellenberger CJ (2017) Temporomandibular joint MRI findings in adolescents with primary disk displacement in comparison to those in juvenile idiopathic arthritis. Pediatr Radiol 47:S354Google Scholar
  36. 36.
    Bolhalder A, Patcas R, Eichenberger M et al (2017) Midterm MRI follow-up of TMJ inflammation, deformation and mandibular growth in JIA patients under systemic treatment. Pediatr Radiol 47:S354–S355Google Scholar
  37. 37.
    Hamardzumyan Schmid A, Kellenberger CJ (2017) Quantitative grading of TMJ synovitis in children with JIA — influence of MR-coil, timing after contrast-injection and location of measurements on joint-to-muscle enhancement ratio. Pediatr Radiol 47:S376Google Scholar
  38. 38.
    Tolend M, Twilt M, Cron RQ et al (2017) Towards establishing a standardized magnetic resonance imaging scoring system for temporomandibular joints in juvenile idiopathic arthritis. Arthritis Care Res.  https://doi.org/10.1002/acr.23340
  39. 39.
    Boers M, Kirwan JR, Wells G et al (2014) Developing core outcome measurement sets for clinical trials: OMERACT filter 2.0. J Clin Epidemiol 67:745–753CrossRefPubMedGoogle Scholar
  40. 40.
    Kottke R, Saurenmann RK, Schneider MM et al (2015) Contrast-enhanced MRI of the temporomandibular joint: findings in children without juvenile idiopathic arthritis. Acta Radiol 56:1145–1152CrossRefPubMedGoogle Scholar
  41. 41.
    Tzaribachev N, Fritz J, Horger M (2009) Spectrum of magnetic resonance imaging appearances of juvenile temporomandibular joints (TMJ) in non-rheumatic children. Acta Radiol 50:1182–1186CrossRefPubMedGoogle Scholar
  42. 42.
    Ma GMY, Amirabadi A, Inarejos E et al (2015) MRI thresholds for discrimination between normal and mild temporomandibular joint involvement in juvenile idiopathic arthritis. Pediatr Rheumatol Online J 13:53CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    von Kalle T, Winkler P, Stuber T (2013) Contrast-enhanced MRI of normal temporomandibular joints in children — is there enhancement or not? Rheumatology 52:363–367CrossRefGoogle Scholar
  44. 44.
    Karlo CA, Patcas R, Kau T et al (2012) MRI of the temporo-mandibular joint: which sequence is best suited to assess the cortical bone of the mandibular condyle? A cadaveric study using micro-CT as the standard of reference. Eur Radiol 22:1579–1585CrossRefPubMedGoogle Scholar
  45. 45.
    Ruperto N, Meiorin S, Iusan S et al (2008) Consensus procedures and their role in pediatric rheumatology. Curr Rheumatol Rep 10:142–146CrossRefPubMedGoogle Scholar
  46. 46.
    Johnson K (2006) Imaging of juvenile idiopathic arthritis. Pediatr Radiol 36:743–758CrossRefPubMedGoogle Scholar
  47. 47.
    Smith HJ, Larheim TA, Aspestrand F (1992) Rheumatic and nonrheumatic disease in the temporomandibular joint: gadolinium-enhanced MR imaging. Radiology 185:229–234CrossRefPubMedGoogle Scholar
  48. 48.
    von Kalle T, Stuber T, Winkler P et al (2015) Early detection of temporomandibular joint arthritis in children with juvenile idiopathic arthritis — the role of contrast-enhanced MRI. Pediatr Radiol 45:402–410CrossRefGoogle Scholar
  49. 49.
    Resnick CM, Vakilian PM, Breen M et al (2016) Quantifying temporomandibular joint synovitis in children with juvenile idiopathic arthritis. Arthritis Care Res 68:1795–1802CrossRefGoogle Scholar
  50. 50.
    Darrah TH, Prutsman-Pfeiffer JJ, Poreda RJ et al (2009) Incorporation of excess gadolinium into human bone from medical contrast agents. Metallomics 1:479–488CrossRefPubMedGoogle Scholar
  51. 51.
    Bae S, Lee H-J, Han K et al (2017) Gadolinium deposition in the brain: association with various GBCAs using a generalized additive model. Eur Radiol 27:3353–3361CrossRefPubMedGoogle Scholar
  52. 52.
    Murata N, Murata K, Gonzalez-Cuyar LF et al (2016) Gadolinium tissue deposition in brain and bone. Magn Reson Imaging 34:1359–1365CrossRefPubMedGoogle Scholar
  53. 53.
    Kuno H, Jara H, Buch K et al (2016) Global and regional brain assessment with quantitative MR imaging in patients with prior exposure to linear gadolinium-based contrast agents. Radiology 283:195–204CrossRefPubMedGoogle Scholar
  54. 54.
    Radbruch A, Weberling LD, Kieslich PJ et al (2015) Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology 275:783–791CrossRefPubMedGoogle Scholar
  55. 55.
    Gold GE, Busse RF, Beehler C et al (2007) Isotropic MRI of the knee with 3D fast spin-echo extended echo-train acquisition (XETA): initial experience. AJR Am J Roentgenol 188:1287–1293CrossRefPubMedGoogle Scholar
  56. 56.
    Barnabe C, Toepfer D, Marotte H et al (2016) Definition for rheumatoid arthritis erosions imaged with high resolution peripheral quantitative computed tomography and interreader reliability for detection and measurement. J Rheumatol 43:1935–1940CrossRefPubMedGoogle Scholar
  57. 57.
    Kirkhus E, Arvidsson LZ, Smith H-J et al (2016) Disk abnormality coexists with any degree of synovial and osseous abnormality in the temporomandibular joints of children with juvenile idiopathic arthritis. Pediatr Radiol 46:331–341CrossRefPubMedGoogle Scholar
  58. 58.
    Markic G, Müller L, Patcas R et al (2015) Assessing the length of the mandibular ramus and the condylar process: a comparison of OPG, CBCT, CT, MRI, and lateral cephalometric measurements. Eur J Orthod 37:13–21CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Elka Miller
    • 1
  • Emilio J. Inarejos Clemente
    • 2
  • Nikolay Tzaribachev
    • 3
  • Saurabh Guleria
    • 4
  • Mirkamal Tolend
    • 5
    • 6
    Email author
  • Arthur B. Meyers
    • 7
  • Thekla von Kalle
    • 8
  • Jennifer Stimec
    • 5
  • Bernd Koos
    • 9
  • Simone Appenzeller
    • 10
  • Linda Z. Arvidsson
    • 11
  • Eva Kirkhus
    • 12
  • Andrea S. Doria
    • 5
  • Christian J. Kellenberger
    • 13
  • Tore A. Larheim
    • 11
  1. 1.Department of Medical ImagingChildren’s Hospital of Eastern OntarioOttawaCanada
  2. 2.Department of Diagnostic ImagingHospital Sant Joan de DeuBarcelonaSpain
  3. 3.Pediatric Rheumatology Research InstituteBad BramstedtGermany
  4. 4.Austin Radiological AssociationAustinUSA
  5. 5.Department of Diagnostic ImagingThe Hospital for Sick ChildrenTorontoCanada
  6. 6.Peter Gilgan Centre for Research and LearningThe Hospital for Sick ChildrenTorontoCanada
  7. 7.Department of RadiologyNemours Children’s Health SystemOrlandoUSA
  8. 8.Department of Pediatric Radiology, Radiologisches InstitutOlgahospital Klinikum StuttgartStuttgartGermany
  9. 9.Department of OrthodonticsUniversity Hospital TübingenTübingenGermany
  10. 10.School of Medical ScienceUniversity of CampinasCampinasBrazil
  11. 11.Department of Maxillofacial Radiology, Institute of Clinical DentistryUniversity of OsloOsloNorway
  12. 12.Department of Radiology and Nuclear MedicineOslo University HospitalOsloNorway
  13. 13.Department of Diagnostic ImagingUniversity Children’s HospitalZürichSwitzerland

Personalised recommendations