Pediatric Radiology

, Volume 48, Issue 2, pp 227–234 | Cite as

Female gonadal shielding with automatic exposure control increases radiation risks

  • Summer L. KaplanEmail author
  • Dennise Magill
  • Marc A. Felice
  • Rui Xiao
  • Sayed Ali
  • Xiaowei Zhu
Original Article



Gonadal shielding remains common, but current estimates of gonadal radiation risk are lower than estimated risks to colon and stomach. A female gonadal shield may attenuate active automatic exposure control (AEC) sensors, resulting in increased dose to colon and stomach as well as to ovaries outside the shielded area.


We assess changes in dose–area product (DAP) and absorbed organ dose when female gonadal shielding is used with AEC for pelvis radiography.

Materials and methods

We imaged adult and 5-year-old equivalent dosimetry phantoms using pelvis radiograph technique with AEC in the presence and absence of a female gonadal shield. We recorded DAP and mAs and measured organ absorbed dose at six internal sites using film dosimetry.


Female gonadal shielding with AEC increased DAP 63% for the 5-year-old phantom and 147% for the adult phantom. Absorbed organ dose at unshielded locations of colon, stomach and ovaries increased 21–51% in the 5-year-old phantom and 17–100% in the adult phantom. Absorbed organ dose sampled under the shield decreased 67% in the 5-year-old phantom and 16% in the adult phantom.


Female gonadal shielding combined with AEC during pelvic radiography increases absorbed dose to organs with greater radiation sensitivity and to unshielded ovaries. Difficulty in proper use of gonadal shields has been well described, and use of female gonadal shielding may be inadvisable given the risks of increasing radiation.


Automatic exposure control Gonadal shield Gonads Ovaries Radiation dose Radiography Shielding 



The authors acknowledge Eatrice Hinton, RT, and Colleen Flowers, RT, for technical assistance and manuscript review.

Compliance with ethical standards

Conflicts of interest



  1. 1.
    Ardran GM, Crooks HE (1957) Gonad radiation dose from diagnostic procedures. Br J Radiol 30:295–297CrossRefPubMedGoogle Scholar
  2. 2.
    Stanford RW, Vance J (1955) The quantity of radiation received by the reproductive organs of patients during routine diagnostic X-ray examinations. Br J Radiol 28:266–273CrossRefPubMedGoogle Scholar
  3. 3.
    Abram E, Wilkinson DM, Hodson CJ (1958) Gonadal protection from X radiation for the female. Br J Radiol 31:335–3365CrossRefPubMedGoogle Scholar
  4. 4.
    Adran GM, Kemp FH (1957) Protection of the male gonads in diagnostic procedures. Br J Radiol 30:280CrossRefPubMedGoogle Scholar
  5. 5.
    Feldman A, Babcock GC, Lanier RR et al (1958) Gonadal exposure dose from diagnostic X-ray procedures. Radiology 71:197–207CrossRefPubMedGoogle Scholar
  6. 6.
    International Commission on Radiological Protection (1977) ICRP publication 26: recommendations of the ICRP. Ann ICRP 1Google Scholar
  7. 7.
    International Commission on Radiological Protection (1991) ICRP publication 60: 1990 recommendations of the ICRP. Ann ICRP 21Google Scholar
  8. 8.
    International Commission on Radiological Protection (2007) ICRP publication 103: the 2007 recommendations of the International Commission on Radiological Protection. Ann ICRP 37:1–332Google Scholar
  9. 9.
    Rossi RP, Lin P-JP, Rauch PL et al (1985) AAPM report 14: performance specifications and acceptance testing for X-ray generators and automatic exposure control devices. American Association of Physicists in Medicine, New YorkGoogle Scholar
  10. 10.
    Kaplan SL, Magill D, Felice MA et al (2017) Intussusception reduction: effect of air vs. liquid enema on radiation dose. Pediatr Radiol.
  11. 11.
    Wang ZJ, Chen KS, Gould R et al (2011) Positive enteric contrast material for abdominal and pelvic CT with automatic exposure control: what is the effect on patient radiation exposure? Eur J Radiol 79:e58–e62CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Paul J, Schell B, Kerl JM et al (2011) Effect of contrast material on image noise and radiation dose in adult chest computed tomography using automatic exposure control: a comparative study between 16-, 64- and 128-slice CT. Eur J Radiol 79:e128–e132CrossRefPubMedGoogle Scholar
  13. 13.
    Nguyen KK, Schlaifer AE, Smith DL et al (2012) In automated fluoroscopy settings, does shielding affect radiation exposure to surrounding unshielded tissues? J Endourol 26:1489–1493CrossRefPubMedGoogle Scholar
  14. 14.
    Persliden J, Schuwert P, Mortensson W (1996) Comparison of absorbed radiation doses in barium and air enema reduction of intussusception: a phantom study. Pediatr Radiol 26:329–332CrossRefPubMedGoogle Scholar
  15. 15.
    Herrmann TL, Fauber TL, Gill J et al (2012) White paper: best practices in digital radiography. American Society of Radiologic Technologists. Accessed 17 Aug 2017
  16. 16.
    Goske MJ, Charkot E, Herrmann T et al (2011) Image Gently: challenges for radiologic technologists when performing digital radiography in children. Pediatr Radiol 41:611–619CrossRefPubMedGoogle Scholar
  17. 17.
    Kenny N, Hill J (1992) Gonad protection in young orthopaedic patients. BMJ 304:1411–1413CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Palmer SH, Starritt HC, Paterson M (1998) Radiation protection of the ovaries in young scoliosis patients. Eur Spine J 7:278–281CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wainwright AM (2000) Shielding reproductive organs of orthopaedic patients during pelvic radiography. Ann R Coll Surg Engl 82:318–321PubMedPubMedCentralGoogle Scholar
  20. 20.
    Liakos P, Schoenecker PL, Lyons D et al (2001) Evaluation of the efficacy of pelvic shielding in preadolescent girls. J Pediatr Orthop 21:433–435PubMedGoogle Scholar
  21. 21.
    McCarty M, Waugh R, McCallum H et al (2001) Paediatric pelvic imaging: improvement in gonad shield placement by multidisciplinary audit. Pediatr Radiol 31:646–649CrossRefPubMedGoogle Scholar
  22. 22.
    Sikand M, Stinchcombe S, Livesley PJ (2003) Study on the use of gonadal protection shields during paediatric pelvic X-rays. Ann R Coll Surg Engl 85:422–425CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gul A, Zafar M, Maffulli N (2005) Gonadal shields in pelvic radiographs in pediatric patients. Bull Hosp Jt Dis 63:13–14PubMedGoogle Scholar
  24. 24.
    Bardo DM, Black M, Schenk K et al (2009) Location of the ovaries in girls from newborn to 18 years of age: reconsidering ovarian shielding. Pediatr Radiol 39:253–259CrossRefPubMedGoogle Scholar
  25. 25.
    Fawcett SL, Gomez AC, Barter SJ et al (2012) More harm than good? The anatomy of misguided shielding of the ovaries. Br J Radiol 85:e442–e447CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Fawcett SL, Barter SJ (2009) The use of gonad shielding in paediatric hip and pelvis radiographs. Br J Radiol 82:363–370CrossRefPubMedGoogle Scholar
  27. 27.
    Frantzen MJ, Robben S, Postma AA et al (2012) Gonad shielding in paediatric pelvic radiography: disadvantages prevail over benefit. Insights Imaging 3:23–32CrossRefPubMedGoogle Scholar
  28. 28.
    Lee MC, Lloyd J, Solomito MJ (2017) Poor utility of gonadal shielding for pediatric pelvic radiographs. Orthopedics 40:e623–e627CrossRefPubMedGoogle Scholar
  29. 29.
    Karami V, Zabihzadeh M, Shams N, Saki Malehi A (2017) Gonad shielding during pelvic radiography: a systematic review and meta-analysis. Arch Iran Med 20:113–123PubMedGoogle Scholar
  30. 30.
    Winfeld M, Strubel N, Pinkney L et al (2013) Relative distribution of pertinent findings on portable neonatal abdominal radiographs: can we shield the gonads? Pediatr Radiol 43:1295–1302CrossRefPubMedGoogle Scholar
  31. 31.
    American College of Radiology, Society for Pediatric Radiology (2014) ACR-SPR practice parameter for general radiography, amended 2014. Vol RES 30–2013 (Res 39)Google Scholar
  32. 32.
    Khong PL, Ringertz H, Donoghue V et al (2013) ICRP publication 121: radiological protection in paediatric diagnostic and interventional radiology. Ann ICRP 42:1–63 CrossRefPubMedGoogle Scholar
  33. 33.
    Don S (2004) Radiosensitivity of children: potential for overexposure in CR and DR and magnitude of doses in ordinary radiographic examinations. Pediatr Radiol 34:S167–S172CrossRefPubMedGoogle Scholar
  34. 34.
    Kaplan SL, Magill D, Felice MA et al (2015) Lead gonad shields: good or bad for patient radiation exposure? Pediatr Radiol 45:S89–S90Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Summer L. Kaplan
    • 1
    • 2
    Email author
  • Dennise Magill
    • 3
  • Marc A. Felice
    • 3
  • Rui Xiao
    • 4
  • Sayed Ali
    • 5
  • Xiaowei Zhu
    • 1
    • 2
  1. 1.Department of RadiologyThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  2. 2.Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Environmental Health and Radiation SafetyUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Department of Biostatistics and EpidemiologyUniversity of PennsylvaniaPhiladelphiaUSA
  5. 5.Department of RadiologyTemple University HospitalPhiladelphiaUSA

Personalised recommendations