Pediatric Radiology

, Volume 48, Issue 1, pp 5–20 | Cite as

Radiation dose management for pediatric cardiac computed tomography: a report from the Image Gently ‘Have-A-Heart’ campaign

  • Cynthia K. Rigsby
  • Sarah E. McKenney
  • Kevin D. Hill
  • Anjali Chelliah
  • Andrew J. Einstein
  • B. Kelly Han
  • Joshua D. Robinson
  • Christina L. Sammet
  • Timothy C. Slesnick
  • Donald P. Frush


Children with congenital or acquired heart disease can be exposed to relatively high lifetime cumulative doses of ionizing radiation from necessary medical imaging procedures including radiography, fluoroscopic procedures including diagnostic and interventional cardiac catheterizations, electrophysiology examinations, cardiac computed tomography (CT) studies, and nuclear cardiology examinations. Despite the clinical necessity of these imaging studies, the related ionizing radiation exposure could pose an increased lifetime attributable cancer risk. The Image Gently “Have-A-Heart” campaign is promoting the appropriate use of medical imaging studies in children with congenital or acquired heart disease while minimizing radiation exposure. The focus of this manuscript is to provide a comprehensive review of radiation dose management and CT performance in children with congenital or acquired heart disease.


Computed tomography Children Congenital heart disease Heart Radiation safety 


Compliance with ethical standards

Conflicts of interest

C.K. Rigsby and J.D. Robinson are supported by grant NHLBI R01 HL115828 from the National Heart, Lung, and Blood Institute. K.D. Hill is supported by UL1 TR001117 from the National Center for Advancing Translational Sciences. A.J. Einstein is supported by grant R01 HL10971 from the National Heart, Lung, and Blood Institute and has received research grants to Columbia University from GE Healthcare, Philips Healthcare, and Toshiba America Medical Systems. C.L. Sammet is a member of Bayer HealthCare Informatics Global Advisory Board. S.E. McKenney, A. Chelliah, B.K. Han, T.C. Slesnick and D.P. Frush report no conflicts of interest.


  1. 1.
    United Nations Scientific Committee on the Effects of Atomic Radiation (2013) Sources, effects and risks of ionizing radiation. UNSCEAR report 2013 to the general assembly with scientific annexes. Volume II, scientific annex B: effects of radiation exposure of children. E.14.IX.2. Sources, effects and risks of ionizing radiation. United Nations, New YorkGoogle Scholar
  2. 2.
    Nguyen PK, Lee WH, Li YF et al (2015) Assessment of the radiation effects of cardiac CT angiography using protein and genetic biomarkers. JACC Cardiovasc Imaging 8:873–884PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Beels L, Bacher K, De Wolf D et al (2009) Gamma-H2AX foci as a biomarker for patient X-ray exposure in pediatric cardiac catheterization: are we underestimating radiation risks? Circulation 120:1903–1909PubMedCrossRefGoogle Scholar
  4. 4.
    Pearce MS, Salotti JA, Little MP et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380:499–505PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Mathews JD, Forsythe AV, Brady Z et al (2013) Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ 346:f2360PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Gardavaud F, Luciani A, Rahmouni A (2012) CT scans in childhood and risk of leukaemia and brain tumours. Lancet 380:1735 author reply 1736–1737PubMedCrossRefGoogle Scholar
  7. 7.
    Deng J, Zhang Y, Nath R et al (2012) CT scans in childhood and risk of leukaemia and brain tumours. Lancet 380:1735 author reply 1736–1737PubMedCrossRefGoogle Scholar
  8. 8.
    Zopf DA, Green GE (2012) CT scans in childhood and risk of leukaemia and brain tumours. Lancet 380:1735–1736 author reply 1736–1737PubMedCrossRefGoogle Scholar
  9. 9.
    Hauptmann M, Meulepas JM (2012) CT scans in childhood and risk of leukaemia and brain tumours. Lancet 380:1736 author reply 1736–1737PubMedCrossRefGoogle Scholar
  10. 10.
    National Research Council, Division on Earth and Life Studies, Board on Radiation Effects Research (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII, phase 2. National Academies Press, Washington, DCGoogle Scholar
  11. 11.
    Jolly D, Meyer J (2009) A brief review of radiation hormesis. Australas Phys Eng Sci Med 32:180–187PubMedCrossRefGoogle Scholar
  12. 12.
    Huang WY, Muo CH, Lin CY et al (2014) Paediatric head CT scan and subsequent risk of malignancy and benign brain tumour: a nation-wide population-based cohort study. Br J Cancer 110:2354–2360PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Krille L, Dreger S, Schindel R et al (2015) Risk of cancer incidence before the age of 15 years after exposure to ionising radiation from computed tomography: results from a German cohort study. Radiat Environ Biophys 54:1–12PubMedCrossRefGoogle Scholar
  14. 14.
    Journy N, Rehel JL, Ducou Le Pointe H et al (2015) Are the studies on cancer risk from CT scans biased by indication? Elements of answer from a large-scale cohort study in France. Br J Cancer 112:185–193PubMedCrossRefGoogle Scholar
  15. 15.
    Boice JD (2015) Radiation epidemiology and recent paediatric computed tomography studies. Ann ICRP 44:236–248PubMedCrossRefGoogle Scholar
  16. 16.
    Cohen MD (2015) ALARA, Image Gently and CT-induced cancer. Pediatr Radiol 45:465–470PubMedCrossRefGoogle Scholar
  17. 17.
    International Commission on Radiological Protection (1999) 1999 annual report of the International Commission on Radiological Protection. Accessed 30 Aug 2017
  18. 18.
    Valentin J (2005) Low-dose extrapolation of radiation-related cancer risk. Ann ICRP 35:1–40Google Scholar
  19. 19.
    Brooks AL, Taylor GN, Benjamin S et al (2001) Report No. 135 - Liver cancer risk from internally-deposited radionuclides. NRCP, BethesdaGoogle Scholar
  20. 20.
    Upton AC, Adelstein SJ, Brenner DJ et al (2001) Report No. 136 - Evaluation of the linear-nonthreshold dose-response model for ionizing radiation. National Council on Radiation Protection and Measurements, BethesdaGoogle Scholar
  21. 21.
    Hill KD, Frush DP, Han BK et al (2017) Radiation safety in children with congenital and acquired heart disease: a scientific position statement on multimodality dose optimization from the Image Gently alliance. JACC Cardiovasc Imaging 10:797–818PubMedCrossRefGoogle Scholar
  22. 22.
    Gherardi GG, Iball GR, Darby MJ et al (2011) Cardiac computed tomography and conventional angiography in the diagnosis of congenital cardiac disease in children: recent trends and radiation doses. Cardiol Young 21:616–622PubMedCrossRefGoogle Scholar
  23. 23.
    Han BK, Lesser AM, Vezmar M et al (2013) Cardiovascular imaging trends in congenital heart disease: a single center experience. J Cardiovasc Comput Tomogr 7:361–366PubMedCrossRefGoogle Scholar
  24. 24.
    Han BK, Lindberg J, Grant K et al (2011) Accuracy and safety of high pitch computed tomography imaging in young children with complex congenital heart disease. Am J Cardiol 107:1541–1546PubMedCrossRefGoogle Scholar
  25. 25.
    Goo HW (2013) Current trends in cardiac CT in children. Acta Radiol 54:1055–1062PubMedCrossRefGoogle Scholar
  26. 26.
    Han BK, Rigsby CK, Hlavacek A et al (2015) Computed tomography imaging in patients with congenital heart disease part I: rationale and utility. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT): endorsed by the Society of [sic] Pediatric Radiology (SPR) and the North American Society of [sic] Cardiac Imaging (NASCI). J Cardiovasc Comput Tomogr 9:475–492PubMedCrossRefGoogle Scholar
  27. 27.
    Meinel FG, Henzler T, Schoepf UJ et al (2015) ECG-synchronized CT angiography in 324 consecutive pediatric patients: spectrum of indications and trends in radiation dose. Pediatr Cardiol 36:569–578PubMedCrossRefGoogle Scholar
  28. 28.
    Yang JC, Lin MT, Jaw FS et al (2015) Trends in the utilization of computed tomography and cardiac catheterization among children with congenital heart disease. J Formos Med Assoc 114:1061–1068PubMedCrossRefGoogle Scholar
  29. 29.
    Perez M, Frush DP, Boyd M et al (2016) World Health Organization: Communicating radiation risks in paediatric imaging: information to support health care discussions about benefit and risk. World Health Organization, GenevaGoogle Scholar
  30. 30.
    Prabhu V, Rosenkrantz AB (2015) Imbalance of opinions expressed on Twitter relating to CT radiation risk: an opportunity for increased radiologist representation. AJR Am J Roentgenol 204:W48–W51PubMedCrossRefGoogle Scholar
  31. 31.
    Sadigh G, Khan R, Kassin MT et al (2014) Radiation safety knowledge and perceptions among residents: a potential improvement opportunity for graduate medical education in the United States. Acad Radiol 21:869–878PubMedCrossRefGoogle Scholar
  32. 32.
    Rehani MM, Berris T (2012) International Atomic Energy Agency study with referring physicians on patient radiation exposure and its tracking: a prospective survey using a web-based questionnaire. BMJ Open 2Google Scholar
  33. 33.
    Boutis K, Cogollo W, Fischer J et al (2013) Parental knowledge of potential cancer risks from exposure to computed tomography. Pediatrics 132:305–311PubMedCrossRefGoogle Scholar
  34. 34.
    Puri S, Hu R, Quazi RR et al (2012) Physicians' and midlevel providers' awareness of lifetime radiation-attributable cancer risk associated with commonly performed CT studies: relationship to practice behavior. AJR Am J Roentgenol 199:1328–1336PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Lam DL, Larson DB, Eisenberg JD et al (2015) Communicating potential radiation-induced cancer risks from medical imaging directly to patients. AJR Am J Roentgenol 205:962–970PubMedCrossRefGoogle Scholar
  36. 36.
    Hartwig HD, Clingenpeel J, Perkins AM et al (2013) Parental knowledge of radiation exposure in medical imaging used in the pediatric emergency department. Pediatr Emerg Care 29:705–709PubMedCrossRefGoogle Scholar
  37. 37.
    Robey TE, Edwards K, Murphy MK (2014) Barriers to computed tomography radiation risk communication in the emergency department: a qualitative analysis of patient and physician perspectives. Acad Emerg Med 21:122–129PubMedCrossRefGoogle Scholar
  38. 38.
    Ditkofsky N, Shekhani HN, Cloutier M et al (2016) Ionizing radiation knowledge among emergency department providers. J Am Coll Radiol 13:1044–1049PubMedCrossRefGoogle Scholar
  39. 39.
    Steele JR, Jones AK, Clarke RK et al (2017) Use of an online education platform to enhance patients' knowledge about radiation in diagnostic imaging. J Am Coll Radiol 14:386–392PubMedCrossRefGoogle Scholar
  40. 40.
    International Commission on Radiological Protection (2007) The 2007 recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP 37:1–332Google Scholar
  41. 41.
    Einstein AJ, Moser KW, Thompson RC et al (2007) Radiation dose to patients from cardiac diagnostic imaging. Circulation 116:1290–1305PubMedCrossRefGoogle Scholar
  42. 42.
    McNitt-Gray MF (2002) AAPM/RSNA physics tutorial for residents: topics in CT. Radiation dose in CT. Radiographics 22:1541–1553PubMedCrossRefGoogle Scholar
  43. 43.
    Shope TB, Gagne RM, Johnson GC (1981) A method for describing the doses delivered by transmission x-ray computed tomography. Med Phys 8:488–495PubMedCrossRefGoogle Scholar
  44. 44.
    Food & Drug Administration Department of Health and Human Services (1984) 21 CFR Part 1020: diagnostic X-ray systems and their major components; amendments to performance standard -- FDA. Final rule. Fed Regist 49:34698–34714Google Scholar
  45. 45.
    McCollough CH (2005) Automatic exposure control in CT: are we done yet? Radiology 237:755–756PubMedCrossRefGoogle Scholar
  46. 46.
    McCollough CH, Leng S, Yu L et al (2011) CT dose index and patient dose: they are not the same thing. Radiology 259:311–316PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Newman B, Ganguly A, Kim JE et al (2012) Comparison of different methods of calculating CT radiation effective dose in children. AJR Am J Roentgenol 199:W232–W239PubMedCrossRefGoogle Scholar
  48. 48.
    McCollough CH, Schueler BA (2000) Calculation of effective dose. Med Phys 27:828–837PubMedCrossRefGoogle Scholar
  49. 49.
    Christner JA, Kofler JM, McCollough CH (2010) Estimating effective dose for CT using dose-length product compared with using organ doses: consequences of adopting International Commission on Radiological Protection publication 103 or dual-energy scanning. AJR Am J Roentgenol 194:881–889PubMedCrossRefGoogle Scholar
  50. 50.
    Trattner S, Chelliah A, Prinsen P et al (2017) Estimating effective dose of radiation from pediatric cardiac CT angiography using a 64-MDCT scanner: new conversion factors relating dose-length product to effective dose. AJR Am J Roentgenol 208:585–594PubMedCrossRefGoogle Scholar
  51. 51.
    Hollingsworth CL, Yoshizumi TT, Frush DP et al (2007) Pediatric cardiac-gated CT angiography: assessment of radiation dose. AJR Am J Roentgenol 189:12–18PubMedCrossRefGoogle Scholar
  52. 52.
    Podberesky DJ, Angel E, Yoshizumi TT et al (2012) Radiation dose estimation for prospective and retrospective ECG-gated cardiac CT angiography in infants and small children using a 320-MDCT volume scanner. AJR Am J Roentgenol 199:1129–1135PubMedCrossRefGoogle Scholar
  53. 53.
    American Association of Physicists in Medicine (2011) Size-specific dose estimates (SSDE) in pediatric and adult body CT examinations. AAPM task group 204. AAPM, College ParkGoogle Scholar
  54. 54.
    McCollough C, Bakalyar DM, Bostani M et al (2014) Use of water equivalent diameter for calculating patient size and size-specific dose estimates (SSDE) in CT: the report of AAPM task group 220. AAPM, College ParkGoogle Scholar
  55. 55.
    Kidoh M, Utsunomiya D, Oda S et al (2015) Validity of the size-specific dose estimate in adults undergoing coronary CT angiography: comparison with the volume CT dose index. Int J Cardiovasc Imaging 31:205–211PubMedCrossRefGoogle Scholar
  56. 56.
    Westra SJ, Li X, Gulati K et al (2014) Entrance skin dosimetry and size-specific dose estimate from pediatric chest CTA. J Cardiovasc Comput Tomogr 8:97–107PubMedCrossRefGoogle Scholar
  57. 57.
    Siegel JA, Pennington CW, Sacks B (2017) Subjecting radiologic imaging to the linear no-threshold hypothesis: a non sequitur of non-trivial proportion. J Nucl Med 58:1–6PubMedCrossRefGoogle Scholar
  58. 58.
    Berrington de Gonzalez A, Iulian Apostoaei A, Veiga LH et al (2012) RadRAT: a radiation risk assessment tool for lifetime cancer risk projection. J Radiol Prot 32:205–222PubMedCrossRefGoogle Scholar
  59. 59.
    Brenner DJ, Shuryak I, Einstein AJ (2011) Impact of reduced patient life expectancy on potential cancer risks from radiologic imaging. Radiology 261:193–198PubMedCrossRefGoogle Scholar
  60. 60.
    Deak PD, Smal Y, Kalender WA (2010) Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 257:158–166PubMedCrossRefGoogle Scholar
  61. 61.
    Ghoshhajra BB, Lee AM, Engel LC et al (2014) Radiation dose reduction in pediatric cardiac computed tomography: experience from a tertiary medical center. Pediatr Cardiol 35:171–179PubMedCrossRefGoogle Scholar
  62. 62.
    International Commission on Radiological Protection (1991) 1990 recommendations of the International Commission on Radiological Protection. Ann ICRP 21:1–201CrossRefGoogle Scholar
  63. 63.
    Thomas KE, Wang B (2008) Age-specific effective doses for pediatric MSCT examinations at a large children's hospital using DLP conversion coefficients: a simple estimation method. Pediatr Radiol 38:645–656PubMedCrossRefGoogle Scholar
  64. 64.
    Shrimpton PC (2004) Assessment of patient dose in CT. National Radiological Protection Board, ChiltonGoogle Scholar
  65. 65.
    Paul JF, Rohnean A, Elfassy E et al (2011) Radiation dose for thoracic and coronary step-and-shoot CT using a 128-slice dual-source machine in infants and small children with congenital heart disease. Pediatr Radiol 41:244–249PubMedCrossRefGoogle Scholar
  66. 66.
    Ben Saad M, Rohnean A, Sigal-Cinqualbre A et al (2009) Evaluation of image quality and radiation dose of thoracic and coronary dual-source CT in 110 infants with congenital heart disease. Pediatr Radiol 39:668–676PubMedCrossRefGoogle Scholar
  67. 67.
    Zankl M, Panzer W, Drexler G (1991) The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods. Pt. 6. INIS 23:126Google Scholar
  68. 68.
    Goo HW, Yang DH (2010) Coronary artery visibility in free-breathing young children with congenital heart disease on cardiac 64-slice CT: dual-source ECG-triggered sequential scan vs. single-source non-ECG-synchronized spiral scan. Pediatr Radiol 40:1670–1680PubMedCrossRefGoogle Scholar
  69. 69.
    Kim JE, Newman B (2010) Evaluation of a radiation dose reduction strategy for pediatric chest CT. AJR Am J Roentgenol 194:1188–1193PubMedCrossRefGoogle Scholar
  70. 70.
    Young C, Taylor AM, Owens CM (2011) Paediatric cardiac computed tomography: a review of imaging techniques and radiation dose consideration. Eur Radiol 21:518–529PubMedCrossRefGoogle Scholar
  71. 71.
    Cheng Z, Wang X, Duan Y et al (2010) Low-dose prospective ECG-triggering dual-source CT angiography in infants and children with complex congenital heart disease: first experience. Eur Radiol 20:2503–2511PubMedCrossRefGoogle Scholar
  72. 72.
    Huang B, Law MW, Mak HK et al (2009) Pediatric 64-MDCT coronary angiography with ECG-modulated tube current: radiation dose and cancer risk. AJR Am J Roentgenol 193:539–544PubMedCrossRefGoogle Scholar
  73. 73.
    Cheitlin MD, Alpert JS, Armstrong WF et al (1997) ACC/AHA guidelines for the clinical application of echocardiography. A report of the American College of Cardiology/American Heart Association task force on practice guidelines (Committee on Clinical Application of Echocardiography). Developed in collaboration with the American Society of Echocardiography. Circulation 95:1686–1744PubMedCrossRefGoogle Scholar
  74. 74.
    Lai WW, Geva T, Shirali GS et al (2006) Guidelines and standards for performance of a pediatric echocardiogram: a report from the task force of the pediatric council of the American Society of Echocardiography. J Am Soc Echocardiogr 19:1413–1430PubMedCrossRefGoogle Scholar
  75. 75.
    Han BK, Lesser JR (2013) CT imaging in congenital heart disease: an approach to imaging and interpreting complex lesions after surgical intervention for tetralogy of Fallot, transposition of the great arteries, and single ventricle heart disease. J Cardiovasc Comput Tomogr 7:338–353PubMedCrossRefGoogle Scholar
  76. 76.
    Lin E, Alessio A (2009) What are the basic concepts of temporal, contrast, and spatial resolution in cardiac CT? J Cardiovasc Comput Tomogr 3:403–408PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Marino B, Corno A, Carotti A et al (1990) Pediatric cardiac surgery guided by echocardiography. Established indications and new trends. Scand J Thorac Cardiovasc Surg 24:197–201PubMedCrossRefGoogle Scholar
  78. 78.
    Tworetzky W, McElhinney DB, Brook MM et al (1999) Echocardiographic diagnosis alone for the complete repair of major congenital heart defects. J Am Coll Cardiol 33:228–233PubMedCrossRefGoogle Scholar
  79. 79.
    Prakash A, Powell AJ, Geva T (2010) Multimodality noninvasive imaging for assessment of congenital heart disease. Circ Cardiovasc Imaging 3:112–125PubMedCrossRefGoogle Scholar
  80. 80.
    Stern KW, McElhinney DB, Gauvreau K et al (2011) Echocardiographic evaluation before bidirectional Glenn operation in functional single-ventricle heart disease: comparison to catheter angiography. Circ Cardiovasc Imaging 4:498–505PubMedCrossRefGoogle Scholar
  81. 81.
    Margossian R, Schwartz ML, Prakash A et al (2009) Comparison of echocardiographic and cardiac magnetic resonance imaging measurements of functional single ventricular volumes, mass, and ejection fraction (from the Pediatric Heart Network Fontan Cross-Sectional Study). Am J Cardiol 104:419–428PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Mooij CF, de Wit CJ, Graham DA et al (2008) Reproducibility of MRI measurements of right ventricular size and function in patients with normal and dilated ventricles. J Magn Reson Imaging 28:67–73PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Powell AJ, Maier SE, Chung T et al (2000) Phase-velocity cine magnetic resonance imaging measurement of pulsatile blood flow in children and young adults: in vitro and in vivo validation. Pediatr Cardiol 21:104–110PubMedCrossRefGoogle Scholar
  84. 84.
    Beroukhim RS, Prakash A, Buechel ER et al (2011) Characterization of cardiac tumors in children by cardiovascular magnetic resonance imaging: a multicenter experience. J Am Coll Cardiol 58:1044–1054PubMedCrossRefGoogle Scholar
  85. 85.
    Babu-Narayan SV, Kilner PJ, Li W et al (2006) Ventricular fibrosis suggested by cardiovascular magnetic resonance in adults with repaired tetralogy of Fallot and its relationship to adverse markers of clinical outcome. Circulation 113:405–413PubMedCrossRefGoogle Scholar
  86. 86.
    Buechel ER, Balmer C, Bauersfeld U et al (2009) Feasibility of perfusion cardiovascular magnetic resonance in paediatric patients. J Cardiovasc Magn Reson 11:51PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Taylor AM (2008) Cardiac imaging: MR or CT? Which to use when. Pediatr Radiol 38:S433–S438PubMedCrossRefGoogle Scholar
  88. 88.
    Rappaport BA, Suresh S, Hertz S et al (2015) Anesthetic neurotoxicity -- clinical implications of animal models. N Engl J Med 372:796–797PubMedCrossRefGoogle Scholar
  89. 89.
    Rappaport B, Mellon RD, Simone A et al (2011) Defining safe use of anesthesia in children. N Engl J Med 364:1387–1390PubMedCrossRefGoogle Scholar
  90. 90.
    Andropoulos DB, Greene MF (2017) Anesthesia and developing brains -- implications of the FDA warning. N Engl J Med 376:905–907PubMedCrossRefGoogle Scholar
  91. 91.
    Tandon A, Hashemi S, Parks WJ et al (2016) Improved high-resolution pediatric vascular cardiovascular magnetic resonance with gadofosveset-enhanced 3D respiratory navigated, inversion recovery prepared gradient echo readout imaging compared to 3D balanced steady-state free precession readout imaging. J Cardiovasc Magn Reson 18:74PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Kim RJ, Fieno DS, Parrish TB et al (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100:1992–2002PubMedCrossRefGoogle Scholar
  93. 93.
    Grobner T (2006) Gadolinium -- a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21:1104–1108PubMedCrossRefGoogle Scholar
  94. 94.
    Kanda T, Ishii K, Kawaguchi H et al (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841PubMedCrossRefGoogle Scholar
  95. 95.
    Pulver AF, Puchalski MD, Bradley DJ et al (2009) Safety and imaging quality of MRI in pediatric and adult congenital heart disease patients with pacemakers. Pacing Clin Electrophysiol 32:450–456PubMedCrossRefGoogle Scholar
  96. 96.
    Feltes TF, Bacha E, Beekman RH 3rd et al (2011) Indications for cardiac catheterization and intervention in pediatric cardiac disease: a scientific statement from the American Heart Association. Circulation 123:2607–2652PubMedCrossRefGoogle Scholar
  97. 97.
    Han BK, Overman DM, Grant K et al (2013) Non-sedated, free breathing cardiac CT for evaluation of complex congenital heart disease in neonates. J Cardiovasc Comput Tomogr 7:354–360PubMedCrossRefGoogle Scholar
  98. 98.
    Sayyed SH, Cassidy MM, Hadi MA (2009) Use of multidetector computed tomography for evaluation of global and regional left ventricular function. J Cardiovasc Comput Tomogr 3:S23–S34PubMedCrossRefGoogle Scholar
  99. 99.
    Callahan MJ, Poznauskis L, Zurakowski D et al (2009) Nonionic iodinated intravenous contrast material-related reactions: incidence in large urban children's hospital -- retrospective analysis of data in 12,494 patients. Radiology 250:674–681PubMedCrossRefGoogle Scholar
  100. 100.
    Attili A, Hensley AK, Jones FD et al (2013) Echocardiography and coronary CT angiography imaging of variations in coronary anatomy and coronary abnormalities in athletic children: detection of coronary abnormalities that create a risk for sudden death. Echocardiography 30:225–233PubMedCrossRefGoogle Scholar
  101. 101.
    Kaushal S, Backer CL, Popescu AR et al (2011) Intramural coronary length correlates with symptoms in patients with anomalous aortic origin of the coronary artery. Ann Thorac Surg 92:986–991PubMedCrossRefGoogle Scholar
  102. 102.
    Jia Q, Zhuang J, Jiang J et al (2017) Image quality of CT angiography using model-based iterative reconstruction in infants with congenital heart disease: comparison with filtered back projection and hybrid iterative reconstruction. Eur J Radiol 86:190–197PubMedCrossRefGoogle Scholar
  103. 103.
    Warnes CA, Williams RG, Bashore TM et al (2008) ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: executive summary: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (writing committee to develop guidelines for the management of adults with congenital heart disease). Circulation 118:2395–2451PubMedCrossRefGoogle Scholar
  104. 104.
    Chu WC, Mok GC, Lam WW et al (2006) Assessment of coronary artery aneurysms in paediatric patients with Kawasaki disease by multidetector row CT angiography: feasibility and comparison with 2D echocardiography. Pediatr Radiol 36:1148–1153PubMedCrossRefGoogle Scholar
  105. 105.
    Kim JW, Goo HW (2013) Coronary artery abnormalities in Kawasaki disease: comparison between CT and MR coronary angiography. Acta Radiol 54:156–163PubMedCrossRefGoogle Scholar
  106. 106.
    Bae KT, Hong C, Takahashi N et al (2004) Multi-detector row computed tomographic angiography in pediatric heart transplant recipients: initial observations. Transplantation 77:599–602PubMedCrossRefGoogle Scholar
  107. 107.
    Wever-Pinzon O, Romero J, Kelesidis I et al (2014) Coronary computed tomography angiography for the detection of cardiac allograft vasculopathy: a meta-analysis of prospective trials. J Am Coll Cardiol 63:1992–2004PubMedCrossRefGoogle Scholar
  108. 108.
    Ghadimi Mahani M, Agarwal PP, Rigsby CK et al (2016) CT for assessment of thrombosis and pulmonary embolism in multiple stages of single-ventricle palliation: challenges and suggested protocols. Radiographics 36:1273–1284PubMedCrossRefGoogle Scholar
  109. 109.
    Di Sessa TG, Di Sessa P, Gregory B et al (2009) The use of 3D contrast-enhanced CT reconstructions to project images of vascular rings and coarctation of the aorta. Echocardiography 26:76–81PubMedCrossRefGoogle Scholar
  110. 110.
    Backer CL, Monge MC, Popescu AR et al (2016) Vascular rings. Semin Pediatr Surg 25:165–175PubMedCrossRefGoogle Scholar
  111. 111.
    Meinel FG, Huda W, Schoepf UJ et al (2013) Diagnostic accuracy of CT angiography in infants with tetralogy of Fallot with pulmonary atresia and major aortopulmonary collateral arteries. J Cardiovasc Comput Tomogr 7:367–375PubMedCrossRefGoogle Scholar
  112. 112.
    Lee EY, Jenkins KJ, Muneeb M et al (2013) Proximal pulmonary vein stenosis detection in pediatric patients: value of multiplanar and 3-D VR imaging evaluation. Pediatr Radiol 43:929–936PubMedCrossRefGoogle Scholar
  113. 113.
    Han BK, Vezmar M, Lesser JR et al (2014) Selective use of cardiac computed tomography angiography: an alternative diagnostic modality before second-stage single ventricle palliation. J Thorac Cardiovasc Surg 148:1548–1554PubMedCrossRefGoogle Scholar
  114. 114.
    Jadhav SP, Golriz F, Atweh LA et al (2015) CT angiography of neonates and infants: comparison of radiation dose and image quality of target mode prospectively ECG-gated 320-MDCT and ungated helical 64-MDCT. AJR Am J Roentgenol 204:W184–W191PubMedCrossRefGoogle Scholar
  115. 115.
    Friedman BA, Schoepf UJ, Bastarrika GA et al (2009) Computed tomographic angiography of infants with congenital heart disease receiving extracorporeal membrane oxygenation. Pediatr Cardiol 30:1154–1156PubMedCrossRefGoogle Scholar
  116. 116.
    Paul JF, Rohnean A, Sigal-Cinqualbre A (2010) Multidetector CT for congenital heart patients: what a paediatric radiologist should know. Pediatr Radiol 40:869–875PubMedCrossRefGoogle Scholar
  117. 117.
    Han BK, Rigsby CK, Leipsic J et al (2015) Computed tomography imaging in patients with congenital heart disease, part 2: technical recommendations. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT): endorsed by the Society of [sic] Pediatric Radiology (SPR) and the North American Society of [sic] Cardiac Imaging (NASCI). J Cardiovasc Comput Tomogr 9:493–513PubMedCrossRefGoogle Scholar
  118. 118.
    Shuman WP, Leipsic JA, Busey JM et al (2012) Prospectively ECG gated CT pulmonary angiography versus helical ungated CT pulmonary angiography: impact on cardiac related motion artifacts and patient radiation dose. Eur J Radiol 81:2444–2449PubMedCrossRefGoogle Scholar
  119. 119.
    Karlo C, Leschka S, Goetti RP et al (2011) High-pitch dual-source CT angiography of the aortic valve-aortic root complex without ECG-synchronization. Eur Radiol 21:205–212PubMedCrossRefGoogle Scholar
  120. 120.
    Lell MM, May M, Deak P et al (2011) High-pitch spiral computed tomography: effect on image quality and radiation dose in pediatric chest computed tomography. Investig Radiol 46:116–123CrossRefGoogle Scholar
  121. 121.
    Schernthaner RE, Stadler A, Beitzke D et al (2012) Dose modulated retrospective ECG-gated versus non-gated 64-row CT angiography of the aorta at the same radiation dose: comparison of motion artifacts, diagnostic confidence and signal-to-noise-ratios. Eur J Radiol 81:e585–e590PubMedCrossRefGoogle Scholar
  122. 122.
    Leschka S, Scheffel H, Husmann L et al (2008) Effect of decrease in heart rate variability on the diagnostic accuracy of 64-MDCT coronary angiography. AJR Am J Roentgenol 190:1583–1590PubMedCrossRefGoogle Scholar
  123. 123.
    Rigsby CK, deFreitas RA, Nicholas AC et al (2010) Safety and efficacy of a drug regimen to control heart rate during 64-slice ECG-gated coronary CTA in children. Pediatr Radiol 40:1880–1889PubMedCrossRefGoogle Scholar
  124. 124.
    Chelliah A, Kubacki T, Julien HM et al (2016) Pediatric coronary CTA using phenylephrine to lower heart rate. J Cardiovasc Comput Tomogr 10:339–340PubMedCrossRefGoogle Scholar
  125. 125.
    Achenbach S, Manolopoulos M, Schuhback A et al (2012) Influence of heart rate and phase of the cardiac cycle on the occurrence of motion artifact in dual-source CT angiography of the coronary arteries. J Cardiovasc Comput Tomogr 6:91–98PubMedCrossRefGoogle Scholar
  126. 126.
    Maffei E, Palumbo AA, Martini C et al (2009) "In-house" pharmacological management for computed tomography coronary angiography: heart rate reduction, timing and safety of different drugs used during patient preparation. Eur Radiol 19:2931–2940PubMedCrossRefGoogle Scholar
  127. 127.
    Takx RA, Sucha D, Park J et al (2015) Sublingual nitroglycerin administration in coronary computed tomography angiography: a systematic review. Eur Radiol 25:3536–3542PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Sato K, Isobe S, Sugiura K et al (2009) Optimal starting time of acquisition and feasibility of complementary administration of nitroglycerin with intravenous beta-blocker in multislice computed tomography. J Comput Assist Tomogr 33:193–198PubMedCrossRefGoogle Scholar
  129. 129.
    Lesser JR, Flygenring BJ, Knickelbine T et al (2009) Practical approaches to overcoming artifacts in coronary CT angiography. J Cardiovasc Comput Tomogr 3:4–15PubMedCrossRefGoogle Scholar
  130. 130.
    Bamberg F, Sommer WH, Schenzle JC et al (2010) Systolic acquisition of coronary dual-source computed tomography angiography: feasibility in an unselected patient population. Eur Radiol 20:1331–1336PubMedCrossRefGoogle Scholar
  131. 131.
    Seifarth H, Wienbeck S, Pusken M et al (2007) Optimal systolic and diastolic reconstruction windows for coronary CT angiography using dual-source CT. AJR Am J Roentgenol 189:1317–1323PubMedCrossRefGoogle Scholar
  132. 132.
    Goo HW (2015) Coronary artery imaging in children. Korean J Radiol 16:239–250PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Shuman WP, Branch KR, May JM et al (2008) Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology 248:431–437PubMedCrossRefGoogle Scholar
  134. 134.
    Sun Z, Ng KH (2012) Prospective versus retrospective ECG-gated multislice CT coronary angiography: a systematic review of radiation dose and diagnostic accuracy. Eur J Radiol 81:e94–100PubMedCrossRefGoogle Scholar
  135. 135.
    Qin J, Liu LY, Fang Y et al (2012) 320-detector CT coronary angiography with prospective and retrospective electrocardiogram gating in a single heartbeat: comparison of image quality and radiation dose. Br J Radiol 85:945–951PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Feng Q, Yin Y, Hua X et al (2010) Prospective ECG triggering versus low-dose retrospective ECG-gated 128-channel CT coronary angiography: comparison of image quality and radiation dose. Clin Radiol 65:809–814PubMedCrossRefGoogle Scholar
  137. 137.
    Hausleiter J, Meyer TS, Martuscelli E et al (2012) Image quality and radiation exposure with prospectively ECG-triggered axial scanning for coronary CT angiography: the multicenter, multivendor, randomized PROTECTION-III study. JACC Cardiovasc Imaging 5:484–493PubMedCrossRefGoogle Scholar
  138. 138.
    Chakravarthy M, Sunilkumar G, Pargaonkar S et al (2015) Induced apnea enhances image quality and visualization of cardiopulmonary anatomic during contrastenhanced cardiac computerized tomographic angiography in children. Ann Card Anaesth 18:179–184PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Lell MM, Jost G, Korporaal JG et al (2015) Optimizing contrast media injection protocols in state-of-the art computed tomographic angiography. Investig Radiol 50:161–167CrossRefGoogle Scholar
  140. 140.
    Lesser AM, Newell MC, Samara MA et al (2016) Radiation dose and image quality of 70 kVp functional cardiovascular computed tomography imaging in congenital heart disease. J Cardiovasc Comput Tomogr 10:173–178PubMedCrossRefGoogle Scholar
  141. 141.
    Kuettner A, Gehann B, Spolnik J et al (2009) Strategies for dose-optimized imaging in pediatric cardiac dual source CT. Rofo 181:339–348PubMedCrossRefGoogle Scholar
  142. 142.
    Siegel MJ, Hildebolt C, Bradley D (2013) Effects of automated kilovoltage selection technology on contrast-enhanced pediatric CT and CT angiography. Radiology 268:538–547PubMedCrossRefGoogle Scholar
  143. 143.
    Li J, Udayasankar UK, Toth TL et al (2007) Automatic patient centering for MDCT: effect on radiation dose. AJR Am J Roentgenol 188:547–552PubMedCrossRefGoogle Scholar
  144. 144.
    Matsubara K, Koshida K, Ichikawa K et al (2009) Misoperation of CT automatic tube current modulation systems with inappropriate patient centering: phantom studies. AJR Am J Roentgenol 192:862–865PubMedCrossRefGoogle Scholar
  145. 145.
    Cheng PM (2016) Patient vertical centering and correlation with radiation output in adult abdominopelvic CT. J Digit Imaging 29:428–437PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Han BK, Grant KL, Garberich R et al (2012) Assessment of an iterative reconstruction algorithm (SAFIRE) on image quality in pediatric cardiac CT datasets. J Cardiovasc Comput Tomogr 6:200–204PubMedCrossRefGoogle Scholar
  147. 147.
    Mieville FA, Gudinchet F, Rizzo E et al (2011) Paediatric cardiac CT examinations: impact of the iterative reconstruction method ASIR on image quality -- preliminary findings. Pediatr Radiol 41:1154–1164PubMedCrossRefGoogle Scholar
  148. 148.
    Nakagawa M, Ozawa Y, Sakurai K et al (2015) Image quality at low tube voltage (70 kV) and sinogram-affirmed iterative reconstruction for computed tomography in infants with congenital heart disease. Pediatr Radiol 45:1472–1479PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Nie P, Li H, Duan Y et al (2014) Impact of sinogram affirmed iterative reconstruction (SAFIRE) algorithm on image quality with 70 kVp-tube-voltage dual-source CT angiography in children with congenital heart disease. PloS One 9:e91123PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Rompel O, Glockler M, Janka R et al (2016) Third-generation dual-source 70-kVp chest CT angiography with advanced iterative reconstruction in young children: image quality and radiation dose reduction. Pediatr Radiol 46:462–472PubMedCrossRefGoogle Scholar
  151. 151.
    Prabhu SP, Mahmood S, Sena L et al (2009) MDCT evaluation of pulmonary embolism in children and young adults following a lateral tunnel Fontan procedure: optimizing contrast-enhancement techniques. Pediatr Radiol 39:938–944PubMedCrossRefGoogle Scholar
  152. 152.
    Bae KT (2010) Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology 256:32–61PubMedCrossRefGoogle Scholar
  153. 153.
    Greenberg SB, Bhutta ST (2008) A dual contrast injection technique for multidetector computed tomography angiography of Fontan procedures. Int J Cardiovasc Imaging 24:345–348PubMedCrossRefGoogle Scholar
  154. 154.
    Westra SJ (2014) The communication of the radiation risk from CT in relation to its clinical benefit in the era of personalized medicine: part 1: the radiation risk from CT. Pediatr Radiol 44:515–518PubMedCrossRefGoogle Scholar
  155. 155.
    Larson DB, Rader SB, Forman HP et al (2007) Informing parents about CT radiation exposure in children: it's OK to tell them. AJR Am J Roentgenol 189:271–275PubMedCrossRefGoogle Scholar
  156. 156.
    Einstein AJ, Berman DS, Min JK et al (2014) Patient-centered imaging: shared decision making for cardiac imaging procedures with exposure to ionizing radiation. J Am Coll Cardiol 63:1480–1489PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Broder JS, Frush DP (2014) Content and style of radiation risk communication for pediatric patients. J Am Coll Radiol 11:238–242PubMedCrossRefGoogle Scholar
  158. 158.
    McCollough CH, Bushberg JT, Fletcher JG et al (2015) Answers to common questions about the use and safety of CT scans. Mayo Clin Proc 90:1380–1392PubMedCrossRefGoogle Scholar
  159. 159.
    Nievelstein RA, Frush DP (2012) Should we obtain informed consent for examinations that expose patients to radiation? AJR Am J Roentgenol 199:664–669PubMedCrossRefGoogle Scholar
  160. 160.
    The Joint Comission (2016) Compliance checklist for diagnostic imaging. Joint Comission Resources, ChicagoGoogle Scholar
  161. 161.
    Frush DP, Samei E (2016) CT radiation dose monitoring: current state and new prospects. CME, Medscape. Accessed 31 Aug 2017
  162. 162.
    Mayo-Smith WW, Hara AK, Mahesh M et al (2014) How I do it: managing radiation dose in CT. Radiology 273:657–672PubMedCrossRefGoogle Scholar
  163. 163.
    McCollough CH, Primak AN, Braun N et al (2009) Strategies for reducing radiation dose in CT. Radiol Clin N Am 47:27–40PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Cynthia K. Rigsby
    • 1
  • Sarah E. McKenney
    • 2
  • Kevin D. Hill
    • 3
  • Anjali Chelliah
    • 4
  • Andrew J. Einstein
    • 5
  • B. Kelly Han
    • 6
  • Joshua D. Robinson
    • 7
  • Christina L. Sammet
    • 1
  • Timothy C. Slesnick
    • 8
  • Donald P. Frush
    • 9
  1. 1.Department of Medical Imaging #9, Ann & Robert H. Lurie Children’s Hospital of Chicago, Departments of Radiology and PediatricsNorthwestern University Feinberg School of MedicineChicagoUSA
  2. 2.Division of Diagnostic Imaging and RadiologyChildren’s National Medical CenterWashingtonUSA
  3. 3.Department of PediatricsDuke University Medical CenterDurhamUSA
  4. 4.Division of Pediatric CardiologyColumbia University Medical Center and New York-Presbyterian HospitalNew YorkUSA
  5. 5.Division of Cardiology, Departments of Medicine and RadiologyColumbia University Medical Center and New York-Presbyterian HospitalNew YorkUSA
  6. 6.Department of PediatricsChildren’s Heart Clinic at The Children’s Hospitals and Clinics of MinnesotaMinneapolisUSA
  7. 7.Division of Pediatric Cardiology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Departments of Pediatrics and RadiologyNorthwestern University Feinberg School of MedicineChicagoUSA
  8. 8.Department of Pediatrics, Emory University School of MedicineChildren’s Healthcare of AtlantaAtlantaUSA
  9. 9.Department of RadiologyDuke University Medical CenterDurhamUSA

Personalised recommendations