Advertisement

Pediatric Radiology

, Volume 47, Issue 6, pp 724–735 | Cite as

Muscle MRI in pediatrics: clinical, pathological and genetic correlation

  • Claudia P. CejasEmail author
  • Maria M. Serra
  • David F. Gonzalez Galvez
  • Eliana A. Cavassa
  • Ana L. Taratuto
  • Gabriel A. Vazquez
  • Mario E. L. Massaro
  • Angeles V. Schteinschneider
Pictorial Essay

Abstract

Pediatric myopathies comprise a very heterogeneous group of disorders that may develop at different ages and affect different muscle groups. Its diagnosis is sometimes difficult and must be confirmed by muscle biopsy and/or genetic analysis. In recent years, muscle involvement patterns observed on MRI have become a valuable tool, aiding clinical diagnosis and enriching pathological and genetic assessments. We selected eight myopathy cases from our institutional database in which the pattern of muscle involvement observed on MRI was almost pathognomonic and could therefore contribute to establishing diagnosis. Muscle biopsy, genetic diagnosis or both confirmed all cases.

Keywords

Children Congenital myopathies Magnetic resonance imaging Muscular dystrophy Myopathy Pediatric myopathy 

Notes

Compliance with ethical standards

Conflicts of interest

Dr. Cejas is a speaker (Latin American) for General Electric. Drs. Serra, Galvez, Cavassa, Taratuto, Vazquez, Massaro and Schteinschneider report no conflicts of interest.

References

  1. 1.
    Straub V, Carlier PG, Mercuri E (2012) TREAT-NMD workshop: pattern recognition in genetic muscle diseases using muscle MRI. Neuromuscul Disord 22 Suppl 2:S42–S53CrossRefPubMedGoogle Scholar
  2. 2.
    Mercuri E, Muntoni F (2012) The ever-expanding spectrum of congenital muscular dystrophies. Ann Neurol 72:9–17CrossRefPubMedGoogle Scholar
  3. 3.
    North KN, Wang CH, Clarke N et al (2014) Approach to the diagnosis of congenital myopathies. Neuromuscul Disord 24:97–116CrossRefPubMedGoogle Scholar
  4. 4.
    Kang PB, Griggs RC (2015) Advances in muscular dystrophies. JAMA Neurol 72:741–742CrossRefPubMedGoogle Scholar
  5. 5.
    Compeyrot-Lacassagne S, Feldman BM (2007) Inflammatory myopathies in Children. Rheum Dis Clin North Am 33:525–553CrossRefPubMedGoogle Scholar
  6. 6.
    Pichiecchio A, Tavazzi E (2013) Metabolic myopathies. In: Wattjes MP, Fischer D (eds) Neuromuscular imaging. Springer, New York, pp 127–146CrossRefGoogle Scholar
  7. 7.
    Bönnemann CG, Wang CH, Quijano-Roy S et al (2014) Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord 24:289–311CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mercuri E, Jungbluth H, Muntoni F (2005) Muscle imaging in clinical practice: diagnostic value of muscle magnetic resonance imaging in inherited neuromuscular disorders. Curr Opin Neurol 18:526–537CrossRefPubMedGoogle Scholar
  9. 9.
    Mercuri E, Pichiecchio A, Allsop J et al (2007) Muscle MRI in inherited neuromuscular disorders: past, present, and future. J Magn Reson Imaging 25:433–440CrossRefPubMedGoogle Scholar
  10. 10.
    Wattjes MP, Kley RA, Fischer D (2010) Neuromuscular imaging in inherited muscle diseases. Eur Radiol 20:2447–2460CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hollingsworth KG, de Sousa PL, Straub V et al (2012) Towards harmonization of protocols for MRI outcome measures in skeletal muscle studies: consensus recommendations from two TREAT-NMD NMR workshops. Neuromuscul Disord 22 Suppl 2:S54–S67CrossRefPubMedGoogle Scholar
  12. 12.
    Schmidt GP, Reiser MF, Baur-Melnyk A (2007) Whole-body MRI of the musculoskeletal system: the value of MR imaging. Skeletal Radiol 36:1109–1119CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Peters SA, Köhler C, Schara U et al (2008) Muscular magnetic resonance imaging for evaluation of myopathies in children. Klin Padiatr 220:37–46CrossRefPubMedGoogle Scholar
  14. 14.
    Jungbluth H (2007) Central core disease. Orphanet J Rare Dis 2:25CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kraeva N, Zvaritch E, Rossi AE et al (2013) Novel excitation-contraction uncoupled RYR1 mutations in patients with central core disease. Neuromuscul Disord 23:120–132CrossRefPubMedGoogle Scholar
  16. 16.
    Klein A, Jungbluth H, Clement E et al (2011) Muscle magnetic resonance imaging in congenital myopathies due to ryanodine receptor type I gene mutations. Arch Neurol 68:1171–1179CrossRefPubMedGoogle Scholar
  17. 17.
    Jungbluth H, Davis MR, Müller C et al (2004) Magnetic resonance imaging of muscle in congenital myopathies associated with RYR-1 mutations. Neuromuscul Disord 14:785–790CrossRefPubMedGoogle Scholar
  18. 18.
    Jungbluth H, Wallgren-Pettersson C, Laporte J (2008) Centronuclear (myotubular) myopathy. Orphanet J Rare Dis 3:26CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Liu YW, Lukiyanchuk V, Schmid SL (2011) Common membrane trafficking defects of disease associated dynamin 2 mutations. Traffic 12:1620–1633CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Catteruccia M, Fattori F, Codemo V et al (2013) Centronuclear myopathy related to dynamin 2 mutations: Clinical, morphological, muscle imaging and genetic features of an Italian cohort. Neuromuscul Disord 23:229–238CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Schessl J, Medne L, Hu Y et al (2007) MRI in DNM2-related centronuclear myopathy: evidence for highly selective muscle involvement. Neuromuscul Disord 17:28–32CrossRefPubMedGoogle Scholar
  22. 22.
    Belinda S, Cowling BS, Cottle DL et al (2011) Four and a half LIM protein 1 gene mutations cause four distinct human myopathies: a comprehensive review of the clinical, histological and pathological features. Neuromuscul Disord 21:237–251CrossRefGoogle Scholar
  23. 23.
    Cowling BS, McGrath MJ, Nguyen MA et al (2008) Identification of FHL1 as a regulator of skeletal muscle mass: implications for human myopathy. J Cell Biol 183:1033–1048CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Selcen D, Bromberg MB, Chin SS et al (2011) Reducing bodies and myofibrillar myopathy features in FHL1 muscular dystrophy. Neurology 77:1951–1959CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Astrea G, Schessl J, Clement E et al (2009) Muscle MRI in FHL1-linked reducing body myopathy. Neuromuscul Disord 19:689–691CrossRefPubMedGoogle Scholar
  26. 26.
    Wewer UM, Engvall E (1996) Merosin/laminin-2 and muscular dystrophy. Neuromuscul Disord 6:409–418CrossRefPubMedGoogle Scholar
  27. 27.
    Gawlik KI, Durbeej M (2011) Skeletal muscle laminin and MDC1A: pathogenesis and treatment strategies. Skelet Muscle 1:9CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Quijano-Roy S, Avila-Smirnow, Carlier R (2011) Merosin deficient in congenital muscular dystrophy. In: Wattjes M, Fischer D (eds) Neuromuscular imaging. Springer, New York, pp 177–187Google Scholar
  29. 29.
    Oto A, Aydingöz U, Başgün N et al (2001) MR imaging of pelvic and thigh muscles in congenital muscular dystrophy. Turk J Pediatr 43:44–51PubMedGoogle Scholar
  30. 30.
    Yonekawa T, Nishino I (2015) Ullrich congenital muscular dystrophy: clinicopathological features, natural history and pathomechanism(s). J Neurol Neurosurg Psychiatry 86:280–287CrossRefPubMedGoogle Scholar
  31. 31.
    Ishikawa H, Sugie K, Murayama K et al (2004) Ullrich disease due to deficiency of collagen VI in the sarcolemma. Neurology 62:620–623CrossRefPubMedGoogle Scholar
  32. 32.
    Carlier RY, Mompoint D, Avila-Smirnow D et al (2010) Whole-body muscle magnetic resonance imaging in collagen type VI -related myopathies (Ullrich congenital muscular dystrophy and Bethlem myopathy). Scientific Exhibit presented at the European Congress of Radiology, ViennaGoogle Scholar
  33. 33.
    Mercuri E, Cini C, Pichiecchio A et al (2003) Muscle magnetic resonance imaging in patients with congenital muscular dystrophy and Ullrich phenotype. Neuromuscul Disord 13:554–558CrossRefPubMedGoogle Scholar
  34. 34.
    Mercuri E, Lampe A, Allsop J et al (2005) Muscle MRI in Ullrich congenital muscular dystrophy and Bethlem myopathy. Neuromuscul Disord 15:303–310CrossRefPubMedGoogle Scholar
  35. 35.
    Gowers WR (1879) Pseudo-hypertrophic muscular Paralysis-A clinical lecture. J & A Churchill, LondonGoogle Scholar
  36. 36.
    Flanigan KM (2014) Duchenne and Becker muscular dystrophies. Neurol Clin 32:671–688CrossRefPubMedGoogle Scholar
  37. 37.
    Nowak KJ, Davies KE (2004) Duchenne muscular dystrophy and dystrophin: pathogenesis and opportunities for treatment. EMBO Rep 5:872–876CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kinali M, Arechavala-Gomeza V, Cirak S et al (2011) Muscle histology vs MRI in Duchenne muscular dystrophy. Neurology 76:346–353CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Finanger EL, Russman B, Forbes SC et al (2012) Use of skeletal muscle MRI in diagnosis and monitoring disease progression in Duchenne muscular dystrophy. Phys Med Rehabil Clin N Am 23:1–10CrossRefPubMedGoogle Scholar
  40. 40.
    Iaccarino L, Ghirardello A, Bettio S et al (2014) The clinical features, diagnosis and classification of dermatomyositis. J Autoimmun 48–49:122–127CrossRefPubMedGoogle Scholar
  41. 41.
    Malattia C, Damasio MB, Madeo A et al (2014) Whole-body MRI in the assessment of disease activity in juvenile dermatomyositis. Ann Rheum Dis 73:1083–1090CrossRefPubMedGoogle Scholar
  42. 42.
    Castro TC, Lederman H, Terreri MT et al (2014) Whole-body magnetic resonance imaging in the assessment of muscular involvement in juvenile dermatomyositis/polymyositis patients. Scand J Rheumatol 43:329–333CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Claudia P. Cejas
    • 1
    Email author
  • Maria M. Serra
    • 1
  • David F. Gonzalez Galvez
    • 1
  • Eliana A. Cavassa
    • 2
  • Ana L. Taratuto
    • 3
  • Gabriel A. Vazquez
    • 2
  • Mario E. L. Massaro
    • 2
  • Angeles V. Schteinschneider
    • 2
  1. 1.Radiology DepartmentFoundation for Neurological Research Dr. Raúl Carrea (FLENI)Buenos AiresArgentina
  2. 2.Department of NeuropediatricsFoundation for Neurological Research Dr. Raúl Carrea (FLENI)Buenos AiresArgentina
  3. 3.Neuropathology ConsultantFoundation for Neurological Research Dr. Raúl Carrea (FLENI)Buenos AiresArgentina

Personalised recommendations