Pediatric Radiology

, Volume 47, Issue 2, pp 161–168 | Cite as

Radiation dose levels in pediatric chest CT: experience in 499 children evaluated with dual-source single-energy CT

  • Remy-Jardin Martine
  • Teresa Santangelo
  • Lucie Colas
  • Faivre Jean-Baptiste
  • Alain Duhamel
  • Antoine Deschildre
  • Jacques Remy
Original Article

Abstract

Background

The availability of dual-source technology has introduced the possibility of scanning children at lower kVp with a high-pitch mode, combining high-speed data acquisition and high temporal resolution.

Objective

To establish the radiation dose levels of dual-source, single-energy chest CT examinations in children.

Materials and methods

We retrospectively recorded the dose–length product (DLP) of 499 consecutive examinations obtained in children <50 kg, divided into five weight groups: group 1 (<10 kg, n = 129); group 2 (10–20 kg, n = 176); group 3 (20–30 kg, n = 99), group 4 (30–40 kg, n = 58) and group 5 (40–49 kg, n = 37). All CT examinations were performed with high temporal resolution (75 ms), a high-pitch mode and a weight-adapted selection of the milliamperage.

Results

CT examinations were obtained at 80 kVp with a milliamperage ranging between 40 mAs and 90 mAs, and a pitch of 2.0 (n = 162; 32.5%) or 3.0 (n = 337; 67.5%). The mean duration of data acquisition was 522.8 ± 192.0 ms (interquartile range 390 to 610; median 490). In the study population, the mean CT dose index volume (CTDIvol32) was 0.83 mGy (standard deviation [SD] 0.20 mGy; interquartile range 0.72 to 0.94; median 0.78); the mean DLP32 was 21.4 mGy.cm (SD 9.1 mGy.cm; interquartile range 15 to 25; median 19.0); and the mean size-specific dose estimate (SSDE) was 1.7 mGy (SD 0.4 mGy; interquartile range 1.5 to 1.9; median 1.7). The DLP32, CTDIvol32 and SSDE were found to be statistically significant in the five weight categories (P < 0.0001).

Conclusion

This study establishes the radiation dose levels for dual-source, single-kVp chest CT from a single center. In the five weight categories, the median values varied 15–37 mGy.cm for the DLP32, 0.78–1.25 mGy for the CTDIvol32 and 1.6–2.1 mGy for the SSDE.

Keywords

Chest Children Computed tomography Dual-source computed tomography Lungs Peak kilovoltage Radiation dose 

Notes

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Shrimpton PC, Hillier MC, Lewis MA et al (2006) National survey of doses from CT in the UK. Br J Radiol 79:968–980CrossRefPubMedGoogle Scholar
  2. 2.
    Verdun FR, Gutierrez D, Vader JP et al (2008) CT radiation dose in children: a survey to establish age-based diagnostic reference levels in Switzerland. Eur Radiol 18:1980–1986CrossRefPubMedGoogle Scholar
  3. 3.
    Bernier M-O, Rehel J-L, Brisse HJ et al (2012) Radiation exposure from CT in early childhood: a French large-scale multicentre study. Br J Radiol 85:53–60CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    ICRP (2007) ICRP Publication 103. The 2007 Recommendations of the International Commission on Radiological Protection. http://www.icrp.org/docs/ICRP_Publication_103-Annals_of_the_ICRP_37%282-4%29-Free_extract.pdf. Accessed 2 Oct 2016
  5. 5.
    Practice Parameters and Technical Standards- American College of Radiology. ACR-ASER-SCBT-MR-SPR Practice Parameter for the Performance of Pediatric Computed Tomography (CT)- Revised 2014 (Resolution 3). Pages 1–18Google Scholar
  6. 6.
    Singh S, Kalra MK, Moore MA et al (2009) Dose reduction and compliance with pediatric CT protocols adapted to patient size, clinical indication, and number of prior studies. Radiology 252:200–208CrossRefPubMedGoogle Scholar
  7. 7.
    Nievelstein RAJ, van Dam IM, van der Molen AJ (2010) Multidetector CT in children: current concepts and dose reduction strategies. Pediatr Radiol 40:1324–1344CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lucaya J, Piqueras J, Garcia-Pena P et al (2000) Low-dose high-resolution CT of the chest in children and young adults: dose, cooperation, artifact incidence and image quality. AJR Am J Roentgenol 175:985–992CrossRefPubMedGoogle Scholar
  9. 9.
    Siegel MJ, Schmidt B, Bradley O et al (2004) Radiation dose and image quality in pediatric CT: effect of technical factors and phantom size and shape. Radiology 233:515–522CrossRefPubMedGoogle Scholar
  10. 10.
    Kim JE, Newman B (2010) Evaluation of a radiation dose reduction strategy for pediatric chest CT. AJR Am J Roentgenol 194:1188–1193CrossRefPubMedGoogle Scholar
  11. 11.
    Siegel MJ, Hildebolt C, Bradley D (2013) Effects of automated kilovoltage selection technology on contrast-enhanced pediatric CT and CT angiography. Radiology 268:538–547CrossRefPubMedGoogle Scholar
  12. 12.
    Schindera ST, Treier R, von Allmen G et al (2011) An education and training programme for radiological institutes: impact on the reduction of the CT radiation dose. Eur Radiol 21:2039–2045CrossRefPubMedGoogle Scholar
  13. 13.
    Vassileva J, Rehani MM, Appelgate K et al (2013) IAEA survey of pediatric computed tomography practice in 40 countries in Asia, Europe, Latin America and Africa: procedures and protocols. Eur Radiol 23:623–631CrossRefPubMedGoogle Scholar
  14. 14.
    Lell MM, May M, Deak P et al (2011) High-pitch spiral computed tomography. Effect on image quality and radiation dose in pediatric chest computed tomography. Investig Radiol 46:116–123CrossRefGoogle Scholar
  15. 15.
    Boone JM, Strauss KJ, Cody DD et al (2015) AAPM report No. 204: size-specific dose estimates (SSDE) in pediatric and adult body CT examinations. http://www.aapm.org/pubs/reports/rpt_204.pdf. Accessed July 2015
  16. 16.
    Brenner DJ (2008) Effective dose: a flawed concept that could and should be replaced. Br J Radiol 81:521–523CrossRefPubMedGoogle Scholar
  17. 17.
    Martin CJ (2007) Effective dose: how should it be applied to medical exposures? Br J Radiol 80:639–647CrossRefPubMedGoogle Scholar
  18. 18.
    McCollough CH, Christner JA, Kofler JM (2010) How effective is effective dose as a predictor of radiation risk? AJR Am J Roentgenol 194:890–896CrossRefPubMedGoogle Scholar
  19. 19.
    Westra SJ, Li X, Gulati K et al (2014) Entrance skin dosimetry and size-specific dose estimate from pediatric chest CTA. J Cardiovasc Comput Tomogr 8:97–107CrossRefPubMedGoogle Scholar
  20. 20.
    Brisse HJ, Robilliard M, Savignoni A et al (2009) Assessment of organ absorbed doses and estimation of effective doses from pediatric anthropomorphic phantom measurements for multi-detector row CT with and without automatic exposure control. Health Phys 97:303–314CrossRefPubMedGoogle Scholar
  21. 21.
    Buls N, Bosmans H, Mommaert C et al (2010) CT paediatric doses in Belgium: a multi-centre study. Results from a dosimetry audit in 2007–2009. Belgian Federal Agency of Nuclear Control (FANC). http://www.fanc.fgov.be/GED/00000000/2400/2449.pdf. Accessed 2 Oct 2016
  22. 22.
    Kritsaneepaiboon S, Trinavarat P, Vistutaratna P (2012) Survey of pediatric MDCT radiation dose from university hospitals in Thailand: a preliminary for national dose survey. Acta Radiol 53:820–826CrossRefPubMedGoogle Scholar
  23. 23.
    Granata C, Origgi D, Palorini F et al (2015) Radiation dose from multidetector CT studies in children: results from the first Italian nationwide survey. Pediatr Radiol 45:695–705CrossRefPubMedGoogle Scholar
  24. 24.
    Takei Y, Miyazaki O, Matsubara K et al (2016) Nationwide survey of radiation exposure during pediatric computed tomography examinations and proposal of age-based diagnostic reference levels for Japan. Pediatr Radiol 46:280–285CrossRefPubMedGoogle Scholar
  25. 25.
    Jackson D, Atkin K, Bettenay F (2015) Paediatric CT dose: a multicentre audit of subspecialty practice in Australia and New Zealand. Eur Radiol 25:3109–3122CrossRefPubMedGoogle Scholar
  26. 26.
    Kroft LJM, Roelofs JJH, Geleijns J (2010) Scan time and patient dose for thoracic imaging in neonates and small children using axial volumetric 320-detector row CT compared to helical 64-, 32-, and 16-detector row CT acquisitions. Pediatr Radiol 40:294–300CrossRefPubMedGoogle Scholar
  27. 27.
    Goo HW (2011) Individualized volume CT dose index determined by cross-sectional area and mean density of the body to achieve uniform image noise of contrast-enhanced pediatric chest CT obtained at variable kV levels and with combined tube current modulation. Pediatr Radiol 41:839–847CrossRefPubMedGoogle Scholar
  28. 28.
    Niemann T, Henry S, Duhamel A et al (2014) Is pediatric chest CT achievable at 70 kVp? A feasibility study in 129 children. Pediatr Radiol 44:1347–1357CrossRefPubMedGoogle Scholar
  29. 29.
    Shi JW, Xu DF, Dai HZ et al (2016) Evaluation of chest CT scan in low-weight children with ultralow tube voltage (70 kVp) combined with the Flash scan technique. Br J Radiol 89:201501184Google Scholar
  30. 30.
    Haggerty JE, Smith EA, Kunisaki SM et al (2015) CT imaging of congenital lung lesions: effect of iterative reconstruction on diagnostic performance and radiation dose. Pediatr Radiol 45:989–997CrossRefPubMedGoogle Scholar
  31. 31.
    Yoon H, Kim MJ, Yoon CS et al (2015) Radiation dose and image quality in pediatric chest CT: effects of iterative reconstruction in normal weight and overweight children. Pediatr Radiol 45:337–344CrossRefPubMedGoogle Scholar
  32. 32.
    Rompel O, Glöckler M, Janka R et al (2016) Third-generation dual-source 70-kVp chest CT angiography with advanced iterative reconstruction in young children: image quality and radiation dose reduction. Pediatr Radiol 46:462–472CrossRefPubMedGoogle Scholar
  33. 33.
    Braun FM, Johnson TRC, Sommer et al (2015) Chest CT using spectral filtration: radiation dose, image quality and spectrum of clinical utility. Eur Radiol 25:1598–1606CrossRefPubMedGoogle Scholar
  34. 34.
    Papadakis AE, Perisinakis K, Oikonimou I et al (2011) Automatic exposure control in pediatric and adult computed tomography examinations. Investig Radiol 46:654–662CrossRefGoogle Scholar
  35. 35.
    Goo HW, Suh DS (2006) Tube current reduction in pediatric non-ECG-gated heart CT by combined tube current modulation. Pediatr Radiol 36:344–351CrossRefPubMedGoogle Scholar
  36. 36.
    Boos J, Kröpil P, Klee D et al (2014) Evaluation of the impact of organ-specific dose reduction on image quality in pediatric chest computed tomography. Pediatr Radiol 44:1065–1069CrossRefPubMedGoogle Scholar
  37. 37.
    Larson DB, Johnson LW, Schnell BM et al (2011) Rising use of CT in child visits to the emergency department in the United States, 1995–2008. Radiology 259:793–801CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Remy-Jardin Martine
    • 1
  • Teresa Santangelo
    • 1
    • 2
  • Lucie Colas
    • 1
  • Faivre Jean-Baptiste
    • 1
  • Alain Duhamel
    • 3
  • Antoine Deschildre
    • 4
  • Jacques Remy
    • 1
  1. 1.Department of Thoracic Imaging, Hospital CalmetteCHU Lille (EA 2694) University of LilleLilleFrance
  2. 2.Department of ImagingBambino Gesù Children’s HospitalRomeItaly
  3. 3.Department of Biostatistics; CHU LilleUniversity of Lille (EA 2694) LilleFrance
  4. 4.Department of Pediatric Pulmonology,CHU Lille – University of LilleLilleFrance

Personalised recommendations