Pediatric Radiology

, Volume 47, Issue 1, pp 46–54 | Cite as

Can multi-slice or navigator-gated R2* MRI replace single-slice breath-hold acquisition for hepatic iron quantification?

  • Ralf B. Loeffler
  • M. Beth McCarville
  • Anne W. Wagstaff
  • Matthew P. Smeltzer
  • Axel J. Krafft
  • Ruitian Song
  • Jane S. Hankins
  • Claudia M. HillenbrandEmail author
Original Article



Liver R2* values calculated from multi-gradient echo (mGRE) magnetic resonance images (MRI) are strongly correlated with hepatic iron concentration (HIC) as shown in several independently derived biopsy calibration studies. These calibrations were established for axial single-slice breath-hold imaging at the location of the portal vein. Scanning in multi-slice mode makes the exam more efficient, since whole-liver coverage can be achieved with two breath-holds and the optimal slice can be selected afterward. Navigator echoes remove the need for breath-holds and allow use in sedated patients.


To evaluate if the existing biopsy calibrations can be applied to multi-slice and navigator-controlled mGRE imaging in children with hepatic iron overload, by testing if there is a bias-free correlation between single-slice R2* and multi-slice or multi-slice navigator controlled R2*.

Materials and methods

This study included MRI data from 71 patients with transfusional iron overload, who received an MRI exam to estimate HIC using gradient echo sequences. Patient scans contained 2 or 3 of the following imaging methods used for analysis: single-slice images (n = 71), multi-slice images (n = 69) and navigator-controlled images (n = 17). Small and large blood corrected region of interests were selected on axial images of the liver to obtain R2* values for all data sets. Bland-Altman and linear regression analysis were used to compare R2* values from single-slice images to those of multi-slice images and navigator-controlled images.


Bland-Altman analysis showed that all imaging method comparisons were strongly associated with each other and had high correlation coefficients (0.98 ≤ r ≤ 1.00) with P-values ≤0.0001. Linear regression yielded slopes that were close to 1.


We found that navigator-gated or breath-held multi-slice R2* MRI for HIC determination measures R2* values comparable to the biopsy-validated single-slice, single breath-hold scan. We conclude that these three R2* methods can be interchangeably used in existing R2*-HIC calibrations.


Children Hepatic iron concentration Iron Iron quantification Liver Magnetic resonance imaging R2* quantification T2* 



The authors thank Wendy Pyburn for assistance with data collection, Gail Fortner, RN, for support with patient selection, and Aaryani Sajja and Nathan Artz for reviewing the manuscript.

This work was supported in part by the American Lebanese Syrian Associated Charities (ALSAC – the fund-raising organization of St. Jude Children’s Research Hospital), by grant 5 R01 DK088988 from the National Institute of Diabetes and Digestive and Kidney Diseases and grant 5 R25 CA23944 from the National Cancer Institute.

Compliance with ethical standards

Conflicts of interest



  1. 1.
    Kwiatkowski JL, Cohen AR (2004) Iron chelation therapy in sickle-cell disease and other transfusion-dependent anemias. Hematol Oncol Clin North Am 18:1355–1377, ix CrossRefPubMedGoogle Scholar
  2. 2.
    Coates TD (2014) Physiology and pathophysiology of iron in hemoglobin-associated diseases. Free Radic Biol Med 72:23–40CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cohen A (1987) Management of iron overload in the pediatric patient. Hematol Oncol Clin North Am 1:521–544PubMedGoogle Scholar
  4. 4.
    Ware HM, Kwiatkowski JL (2013) Evaluation and treatment of transfusional iron overload in children. Pediatr Clin North Am 60:1393–1406CrossRefPubMedGoogle Scholar
  5. 5.
    Risdon RA, Barry M, Flynn DM (1975) Transfusional iron overload: the relationship between tissue iron concentration and hepatic fibrosis in thalassaemia. J Pathol 116:83–95CrossRefPubMedGoogle Scholar
  6. 6.
    Olivieri NF (2001) Progression of iron overload in sickle cell disease. Semin Hematol 38:57–62CrossRefPubMedGoogle Scholar
  7. 7.
    Brittenham GM (2011) Iron-chelating therapy for transfusional iron overload. N Engl J Med 364:146–156CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cappellini MD, Pattoneri P (2009) Oral iron chelators. Annu Rev Med 60:25–38CrossRefPubMedGoogle Scholar
  9. 9.
    Urru SA, Tandurella I, Capasso M et al (2015) Reproducibility of liver iron concentration measured on a biopsy sample: a validation study in vivo. Am J Hematol 90:87–90CrossRefPubMedGoogle Scholar
  10. 10.
    Towbin AJ, Serai SD, Podberesky DJ (2013) Magnetic resonance imaging of the pediatric liver: imaging of steatosis, iron deposition, and fibrosis. Magn Reson Imaging Clin N Am 21:669–680CrossRefPubMedGoogle Scholar
  11. 11.
    Villeneuve JP, Bilodeau M, Lepage R et al (1996) Variability in hepatic iron concentration measurement from needle-biopsy specimens. J Hepatol 25:172–177CrossRefPubMedGoogle Scholar
  12. 12.
    Taher AT, Musallam KM, Inati A (2009) Iron overload: consequences, assessment, and monitoring. Hemoglobin 33 Suppl 1:S46–S57CrossRefPubMedGoogle Scholar
  13. 13.
    Hoffer FA (2000) Liver biopsy methods for pediatric oncology patients. Pediatr Radiol 30:481–488CrossRefPubMedGoogle Scholar
  14. 14.
    St Pierre TG, Clark PR, Chua-anusorn W et al (2005) Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood 105:855–861CrossRefPubMedGoogle Scholar
  15. 15.
    Wood JC, Enriquez C, Ghugre N et al (2005) MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 106:1460–1465CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wood JC (2007) Magnetic resonance imaging measurement of iron overload. Curr Opin Hematol 14:183–190CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hankins JS, McCarville MB, Loeffler RB et al (2009) R2* magnetic resonance imaging of the liver in patients with iron overload. Blood 113:4853–4855CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Anderson LJ, Holden S, Davis B et al (2001) Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J 22:2171–2179CrossRefPubMedGoogle Scholar
  19. 19.
    Henninger B, Kremser C, Rauch S et al (2012) Evaluation of MR imaging with T1 and T2* mapping for the determination of hepatic iron overload. Eur Radiol 22:2478–2486CrossRefPubMedGoogle Scholar
  20. 20.
    Feinberg DA, Crooks LE, Hoenninger JC et al (1986) Contiguous thin multisection MR imaging by two-dimensional Fourier transform techniques. Radiology 158:811–817CrossRefPubMedGoogle Scholar
  21. 21.
    Serai SD, Fleck RJ, Quinn CT et al (2015) Retrospective comparison of gradient recalled echo R2* and spin-echo R2 magnetic resonance analysis methods for estimating liver iron content in children and adolescents. Pediatr Radiol 45:1629–1634CrossRefPubMedGoogle Scholar
  22. 22.
    Ehman RL, Felmlee JP (1989) Adaptive technique for high-definition MR imaging of moving structures. Radiology 173:255–263CrossRefPubMedGoogle Scholar
  23. 23.
    Sachs TS, Meyer CH, Hu BS et al (1994) Real-time motion detection in spiral MRI using navigators. Magn Reson Med 32:639–645CrossRefPubMedGoogle Scholar
  24. 24.
    Kefer J, Coche E, Legros G et al (2005) Head-to-head comparison of three-dimensional navigator-gated magnetic resonance imaging and 16-slice computed tomography to detect coronary artery stenosis in patients. J Am Coll Cardiol 46:92–100CrossRefPubMedGoogle Scholar
  25. 25.
    Taouli B, Sandberg A, Stemmer A et al (2009) Diffusion-weighted imaging of the liver: comparison of navigator triggered and breathhold acquisitions. J Magn Reson Imaging 30:561–568CrossRefPubMedGoogle Scholar
  26. 26.
    Kim JH, Hong SS, Eun HW et al (2012) Clinical usefulness of free-breathing navigator-triggered 3D MRCP in non-cooperative patients: comparison with conventional breath-hold 2D MRCP. Eur J Radiol 81:e513–e518CrossRefPubMedGoogle Scholar
  27. 27.
    Vasanawala SS, Iwadate Y, Church DG et al (2010) Navigated abdominal T1-W MRI permits free-breathing image acquisition with less motion artifact. Pediatr Radiol 40:340–344CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Motosugi U, Hernando D, Bannas P et al (2015) Quantification of liver fat with respiratory-gated quantitative chemical shift encoded MRI. J Magn Reson Imaging 42:1241–1248CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kneeland JB, Shimakawa A, Wehrli FW (1986) Effect of intersection spacing on MR image contrast and study time. Radiology 158:819–822CrossRefPubMedGoogle Scholar
  30. 30.
    McCarville MB, Hillenbrand CM, Loeffler RB et al (2010) Comparison of whole liver and small region-of-interest measurements of MRI liver R2* in children with iron overload. Pediatr Radiol 40:1360–1367CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gudbjartsson H, Patz S (1995) The Rician distribution of noisy MRI data. Magn Reson Med 34:910–914CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Krafft AJ, Loeffler RB, Song R et al (2015) Does fat suppression via chemically selective saturation affect R2*-MRI for transfusional iron overload assessment? A clinical evaluation at 1.5T and 3T. Magn Reson Med 76:591–601CrossRefPubMedGoogle Scholar
  33. 33.
    Altman DG, Bland JM (1983) Measurement in medicine - the analysis of method comparison studies. Statistician 32:307–317CrossRefGoogle Scholar
  34. 34.
    Meloni A, Luciani A, Positano V et al (2011) Single region of interest versus multislice T2* MRI approach for the quantification of hepatic iron overload. J Magn Reson Imaging 33:348–355CrossRefPubMedGoogle Scholar
  35. 35.
    Fernandez-Seara MA, Wehrli FW (2000) Postprocessing technique to correct for background gradients in image-based R*(2) measurements. Magn Reson Med 44:358–366CrossRefPubMedGoogle Scholar
  36. 36.
    Taylor BA, Loeffler RB, Song R et al (2012) Simultaneous field and R2 mapping to quantify liver iron content using autoregressive moving average modeling. J Magn Reson Imaging 35:1125–1132CrossRefPubMedGoogle Scholar
  37. 37.
    Hernando D, Vigen KK, Shimakawa A et al (2012) R*(2) mapping in the presence of macroscopic B(0) field variations. Magn Reson Med 68:830–840CrossRefPubMedGoogle Scholar
  38. 38.
    Song R, Bevington T, Taylor BA et al (2013) Evaluation of correction methods for errors in T2* quantification caused by background gradients. Paper presented at the Proceedings of the 21st Scientific Meeting, International Society for Magnetic Resonance in Medicine, Salt Lake City, UT, USA, April 2013Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ralf B. Loeffler
    • 1
  • M. Beth McCarville
    • 1
  • Anne W. Wagstaff
    • 1
    • 2
    • 3
  • Matthew P. Smeltzer
    • 4
    • 5
  • Axel J. Krafft
    • 1
    • 6
  • Ruitian Song
    • 1
  • Jane S. Hankins
    • 7
  • Claudia M. Hillenbrand
    • 1
    Email author
  1. 1.Diagnostic ImagingSt. Jude Children’s Research HospitalMemphisUSA
  2. 2.Rhodes CollegeMemphisUSA
  3. 3.University of Alabama at Birmingham School of MedicineBirminghamUSA
  4. 4.Department of BiostatisticsSt. Jude Children’s Research HospitalMemphisUSA
  5. 5.Division of Epidemiology, Biostatistics, and Environmental Health, School of Public HealthUniversity of MemphisMemphisUSA
  6. 6.Department of RadiologyUniversity Hospital Center FreiburgFreiburgGermany
  7. 7.Department of HematologySt. Jude Children’s Research HospitalMemphisUSA

Personalised recommendations