Pediatric Radiology

, Volume 46, Issue 10, pp 1430–1438 | Cite as

Prospective detection of cortical dysplasia on clinical MRI in pediatric intractable epilepsy

  • Rupa Radhakrishnan
  • James L. Leach
  • Francesco T. Mangano
  • Michael J. Gelfand
  • Leonid Rozhkov
  • Lili Miles
  • Hansel M. Greiner
Original Article



Cortical dysplasia is the most common cause of pediatric refractory epilepsy. MRI detection of epileptogenic lesion is associated with good postsurgical outcome. Additional electrophysiological information is suggested to be helpful in localization of cortical dysplasia. Educational measures were taken to increase the awareness of cortical dysplasia at our institution in the context of a recent International League Against Epilepsy (ILAE 2011) classification of cortical dysplasia.


To determine changes in the rate of prospective identification of cortical dysplasia on an initial radiology report and also evaluate the benefit of MRI review as part of a multidisciplinary epilepsy conference in identifying previously overlooked MRI findings.

Materials and methods

We retrospectively evaluated surgically treated children with refractory epilepsy from 2007 to 2014 with cortical dysplasia on histopathology. We analyzed the initial radiology report, preoperative MRI interpretation at multidisciplinary epilepsy conference and subsequent retrospective MRI review with knowledge of the resection site. We recorded additional electrophysiological data and the presence of lobar concordance with the MRI findings.


Of 78 children (44 MRI lesional) evaluated, 18 had initially overlooked MRI findings. Comparing 2007–2010 to 2011–2014, there was improvement in the rate of overlooked findings on the initial radiology report (54% vs. 13% of lesional cases, respectively; P = 0.008). The majority (72%) were identified at a multidisciplinary conference with lobar concordance of findings with at least one additional electrophysiological investigation in 89%.


Awareness of current classification schemes of cortical dysplasia and image review in the context of a multidisciplinary conference can lead to improved MRI detection of cortical dysplasia in children.


Brain Cerebral cortex Children Cortical dysplasia Magnetic resonance imaging Seizures 


Compliance with ethical standards

Conflicts of interest



  1. 1.
    Harvey AS, Cross JH, Shinnar S et al (2008) Defining the spectrum of international practice in pediatric epilepsy surgery patients. Epilepsia 49:146–155CrossRefPubMedGoogle Scholar
  2. 2.
    Rowland NC, Englot DJ, Cage TA et al (2012) A meta-analysis of predictors of seizure freedom in the surgical management of focal cortical dysplasia. J Neurosurg 116:1035–1041CrossRefPubMedGoogle Scholar
  3. 3.
    Leach JL, Miles L, Henkel DM et al (2014) Magnetic resonance imaging abnormalities in the resection region correlate with histopathological type, gliosis extent, and postoperative outcome in pediatric cortical dysplasia. J Neurosurg Pediatr 14:68–80CrossRefPubMedGoogle Scholar
  4. 4.
    Fauser S, Essang C, Altenmuller DM et al (2015) Long-term seizure outcome in 211 patients with focal cortical dysplasia. Epilepsia 56:66–76CrossRefGoogle Scholar
  5. 5.
    Muhlebner A, Coras R, Kobow K et al (2012) Neuropathologic measurements in focal cortical dysplasias: validation of the ILAE 2011 classification system and diagnostic implications for MRI. Acta Neuropathol 123:259–272CrossRefPubMedGoogle Scholar
  6. 6.
    Chen HH, Chen C, Hung SC et al (2014) Cognitive and epilepsy outcomes after epilepsy surgery caused by focal cortical dysplasia in children: early intervention maybe better. Childs Nerv Syst 30:1885–1895CrossRefPubMedGoogle Scholar
  7. 7.
    Oluigbo CO, Wang J, Whitehead MT et al (2015) The influence of lesion volume, perilesion resection volume, and completeness of resection on seizure outcome after resective epilepsy surgery for cortical dysplasia in children. J Neurosurg Pediatr 15:644–650CrossRefPubMedGoogle Scholar
  8. 8.
    Leach JL, Greiner HM, Miles L et al (2014) Imaging spectrum of cortical dysplasia in children. Semin Roentgenol 49:99–111CrossRefPubMedGoogle Scholar
  9. 9.
    Mellerio C, Labeyrie MA, Chassoux F et al (2012) Optimizing MR imaging detection of type 2 focal cortical dysplasia: best criteria for clinical practice. AJNR Am J Neuroradiol 33:1932–1938CrossRefPubMedGoogle Scholar
  10. 10.
    Colombo N, Tassi L, Galli C et al (2003) Focal cortical dysplasias: MR imaging, histopathologic, and clinical correlations in surgically treated patients with epilepsy. AJNR Am J Neuroradiol 24:724–733PubMedGoogle Scholar
  11. 11.
    Salamon N, Kung J, Shaw SJ et al (2008) FDG-PET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology 71:1594–1601CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Itabashi H, Jin K, Iwasaki M et al (2014) Electro- and magneto-encephalographic spike source localization of small focal cortical dysplasia in the dorsal peri-rolandic region. Clin Neurophysiol 125:2358–2363CrossRefPubMedGoogle Scholar
  13. 13.
    Funke ME, Moore K, Orrison WW Jr et al (2011) The role of magnetoencephalography in “nonlesional” epilepsy. Epilepsia 52:10–14CrossRefPubMedGoogle Scholar
  14. 14.
    Palmini A, Najm I, Avanzini G et al (2004) Terminology and classification of the cortical dysplasias. Neurology 62:S2–S8CrossRefPubMedGoogle Scholar
  15. 15.
    Blumcke I, Thom M, Aronica E et al (2011) The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia 52:158–174CrossRefPubMedGoogle Scholar
  16. 16.
    Miles L, Greiner HM, Miles MV et al (2013) Interaction between akt1-positive neurons and age at surgery is associated with surgical outcome in children with isolated focal cortical dysplasia. J Neuropathol Exp Neurol 72:884–891CrossRefPubMedGoogle Scholar
  17. 17.
    Seo JH, Holland K, Rose D et al (2011) Multimodality imaging in the surgical treatment of children with nonlesional epilepsy. Neurology 76:41–48CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Knake S, Triantafyllou C, Wald LL et al (2005) 3T phased array MRI improves the presurgical evaluation in focal epilepsies: a prospective study. Neurology 65:1026–1031CrossRefPubMedGoogle Scholar
  19. 19.
    Pinto A, Brunese L (2010) Spectrum of diagnostic errors in radiology. World J Radiol 2:377–383CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hong SJ, Kim H, Schrader D et al (2014) Automated detection of cortical dysplasia type II in MRI-negative epilepsy. Neurology 83:48–55CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Johnson AM, Sugo E, Barreto D et al (2014) Clinicopathological associations in temporal lobe epilepsy patients utilising the current ILAE focal cortical dysplasia classification. Epilepsy Res 108:1345–1351CrossRefPubMedGoogle Scholar
  22. 22.
    Garbelli R, Milesi G, Medici V et al (2012) Blurring in patients with temporal lobe epilepsy: clinical, high-field imaging and ultrastructural study. Brain 135:2337–2349CrossRefPubMedGoogle Scholar
  23. 23.
    Lee JJ, Kang WJ, Lee DS et al (2005) Diagnostic performance of 18F-FDG PET and ictal 99mTc-HMPAO SPET in pediatric temporal lobe epilepsy: quantitative analysis by statistical parametric mapping, statistical probabilistic anatomical map, and subtraction ictal SPET. Seizure 14:213–220CrossRefPubMedGoogle Scholar
  24. 24.
    Lee SK, Lee SY, Kim KK et al (2005) Surgical outcome and prognostic factors of cryptogenic neocortical epilepsy. Ann Neurol 58:525–532CrossRefPubMedGoogle Scholar
  25. 25.
    Kim YK, Lee DS, Lee SK et al (2002) (18)F-FDG PET in localization of frontal lobe epilepsy: comparison of visual and SPM analysis. J Nucl Med 43:1167–1174PubMedGoogle Scholar
  26. 26.
    Muzik O, Chugani DC, Juhasz C et al (2000) Statistical parametric mapping: assessment of application in children. Neuroimage 12:538–549CrossRefPubMedGoogle Scholar
  27. 27.
    Tan KM, Britton JW, Buchhalter JR et al (2008) Influence of subtraction ictal SPECT on surgical management in focal epilepsy of indeterminate localization: a prospective study. Epilepsy Res 82:190–193CrossRefPubMedGoogle Scholar
  28. 28.
    Matsuda H, Matsuda K, Nakamura F et al (2009) Contribution of subtraction ictal SPECT coregistered to MRI to epilepsy surgery: a multicenter study. Ann Nucl Med 23:283–291CrossRefPubMedGoogle Scholar
  29. 29.
    Kim H, Lim BC, Jeong W et al (2012) Magnetoencephalography in pediatric lesional epilepsy surgery. J Korean Med Sci 27:668–673CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kim JT, Bai SJ, Choi KO et al (2009) Comparison of various imaging modalities in localization of epileptogenic lesion using epilepsy surgery outcome in pediatric patients. Seizure 18:504–510CrossRefPubMedGoogle Scholar
  31. 31.
    Willmann O, Wennberg R, May T et al (2007) The contribution of 18F-FDG PET in preoperative epilepsy surgery evaluation for patients with temporal lobe epilepsy A meta-analysis. Seizure 16:509–520CrossRefPubMedGoogle Scholar
  32. 32.
    Kurian M, Spinelli L, Delavelle J et al (2007) Multimodality imaging for focus localization in pediatric pharmacoresistant epilepsy. Epileptic Disord 9:20–31PubMedGoogle Scholar
  33. 33.
    Pail M, Marecek R, Hermanova M et al (2012) The role of voxel-based morphometry in the detection of cortical dysplasia within the temporal pole in patients with intractable mesial temporal lobe epilepsy. Epilepsia 53:1004–1012CrossRefPubMedGoogle Scholar
  34. 34.
    Wilke M, Rose DF, Holland SK et al (2014) Multidimensional morphometric 3D MRI analyses for detecting brain abnormalities in children: impact of control population. Hum Brain Mapp 35:3199–3215CrossRefPubMedGoogle Scholar
  35. 35.
    Widjaja E, Blaser S, Miller E et al (2007) Evaluation of subcortical white matter and deep white matter tracts in malformations of cortical development. Epilepsia 48:1460–1469CrossRefPubMedGoogle Scholar
  36. 36.
    Bernasconi A, Bernasconi N, Bernhardt BC et al (2011) Advances in MRI for ‘cryptogenic’ epilepsies. Nat Rev Neurol 7:99–108CrossRefPubMedGoogle Scholar
  37. 37.
    Roca P, Mellerio C, Chassoux F et al (2015) Sulcus-based MR analysis of focal cortical dysplasia located in the central region. PLoS One 10, e0122252CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Regis J, Tamura M, Park MC et al (2011) Subclinical abnormal gyration pattern, a potential anatomic marker of epileptogenic zone in patients with magnetic resonance imaging-negative frontal lobe epilepsy. Neurosurgery 69:80–93Google Scholar
  39. 39.
    Mellerio C, Roca P, Chassoux F et al (2015) The power button sign: a newly described central sulcal pattern on surface rendering MR images of type 2 focal cortical dysplasia. Radiology 274:500–507CrossRefPubMedGoogle Scholar
  40. 40.
    Madan N, Grant PE (2009) New directions in clinical imaging of cortical dysplasias. Epilepsia 50:9–18CrossRefPubMedGoogle Scholar
  41. 41.
    Pan JW, Duckrow RB, Gerrard J et al (2013) 7T MR spectroscopic imaging in the localization of surgical epilepsy. Epilepsia 54:1668–1678CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ahmed B, Brodley CE, Blackmon KE et al (2015) Cortical feature analysis and machine learning improves detection of “MRI-negative” focal cortical dysplasia. Epilepsy Behav 48:21–28CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Rupa Radhakrishnan
    • 1
  • James L. Leach
    • 1
  • Francesco T. Mangano
    • 2
  • Michael J. Gelfand
    • 1
  • Leonid Rozhkov
    • 4
  • Lili Miles
    • 3
  • Hansel M. Greiner
    • 4
  1. 1.Department of RadiologyCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  2. 2.Department of NeurosurgeryCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  3. 3.Department of PathologyCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  4. 4.Department of Neurology, Comprehensive Epilepsy Treatment CenterCincinnati Children’s Hospital Medical CenterCincinnatiUSA

Personalised recommendations