Pediatric Radiology

, Volume 46, Issue 9, pp 1258–1268 | Cite as

Evaluation of diagnostic performance of whole-body simultaneous PET/MRI in pediatric lymphoma

  • Maria Rosana PonisioEmail author
  • Jonathan McConathy
  • Richard Laforest
  • Geetika Khanna
Original Article



Whole-body 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) is the standard of care for lymphoma. Simultaneous PET/MRI (magnetic resonance imaging) is a promising new modality that combines the metabolic information of PET with superior soft-tissue resolution and functional imaging capabilities of MRI while decreasing radiation dose. There is limited information on the clinical performance of PET/MRI in the pediatric setting.


This study evaluated the feasibility, dosimetry, and qualitative and quantitative diagnostic performance of simultaneous whole-body FDG-PET/MRI in children with lymphoma compared to PET/CT.

Materials and methods

Children with lymphoma undergoing standard of care FDG-PET/CT were prospectively recruited for PET/MRI performed immediately after the PET/CT. Images were evaluated for quality, lesion detection and anatomical localization of FDG uptake. Maximum and mean standardized uptake values (SUVmax/mean) of normal organs and SUVmax of the most FDG-avid lesions were measured for PET/MRI and PET/CT. Estimation of radiation exposure was calculated using specific age-related factors.


Nine PET/MRI scans were performed in eight patients (mean age: 15.3 years). The mean time interval between PET/CT and PET/MRI was 51 ± 10 min. Both the PET/CT and PET/MRI exams had good image quality and alignment with complete (9/9) concordance in response assessment. The SUVs from PET/MRI and PET/CT were highly correlated for normal organs (SUVmean r2: 0.88, P<0.0001) and very highly for FDG-avid lesions (SUVmax r2: 0.94, P=0.0002). PET/MRI demonstrated an average percent radiation exposure reduction of 39% ± 13% compared with PET/CT.


Simultaneous whole-body PET/MRI is clinically feasible in pediatric lymphoma. PET/MRI performance is comparable to PET/CT for lesion detection and SUV measurements. Replacement of PET/CT with PET/MRI can significantly decrease radiation dose from diagnostic imaging in children.


Children Lymphoma Positron emission tomography/Computed tomography Positron emission tomography/Magnetic resonance imaging Magnetic resonance imaging 


Compliance with ethical standards

Conflicts of interest

Dr. J. McConathy receives consulting fees from GE Healthcare and Siemens Healthcare.


  1. 1.
    Kluge R, Kurch L, Montravers F et al (2013) FDG PET/CT in children and adolescents with lymphoma. Pediatr Radiol 43:406–417CrossRefPubMedGoogle Scholar
  2. 2.
    London K, Cross S, Onikul E et al (2011) 18F-FDG PET/CT in paediatric lymphoma: comparison with conventional imaging. Eur J Nucl Med Mol Imaging 38:274–284CrossRefPubMedGoogle Scholar
  3. 3.
    Cheng G, Servaes S, Zhuang H (2013) Value of 18F-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography scan versus diagnostic contrast computed tomography in initial staging of pediatric patients with lymphoma. Leuk Lymphoma 54:737–742CrossRefPubMedGoogle Scholar
  4. 4.
    Burkhardt B, Zimmermann M, Oschlies I et al (2005) The impact of age and gender on biology, clinical features and treatment outcome of non-Hodgkin lymphoma in childhood and adolescence. Br J Haematol 131:39–49CrossRefPubMedGoogle Scholar
  5. 5.
    Sherief LM, Elsafy UR, Abdelkhalek ER et al (2015) Hodgkin lymphoma in childhood: clinicopathological features and therapy outcome at 2 centers from a developing country. Medicine 94: e670CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ahmed BA, Connolly BL, Shroff P et al (2010) Cumulative effective doses from radiologic procedures for pediatric oncology patients. Pediatrics 126:e851–e858CrossRefPubMedGoogle Scholar
  7. 7.
    Kwee TC, Vermoolen MA, Akkerman EA et al (2014) Whole-body MRI, including diffusion-weighted imaging, for staging lymphoma: comparison with CT in a prospective multicenter study. J Magn Reson Imaging 40:26–36CrossRefPubMedGoogle Scholar
  8. 8.
    Adams HJ, Kwee TC, Lokhorst HM et al (2014) Potential prognostic implications of whole-body bone marrow MRI in diffuse large B-cell lymphoma patients with a negative blind bone marrow biopsy. J Magn Reson Imaging 39:1394–1400CrossRefPubMedGoogle Scholar
  9. 9.
    Siegel MJ, Acharyya S, Hoffer FA et al (2013) Whole-body MR imaging for staging of malignant tumors in pediatric patients: results of the American College of Radiology Imaging Network 6660 Trial. Radiology 266:599–609CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Knopp MV, von Tengg-Kobligk H, Choyke PL (2003) Functional magnetic resonance imaging in oncology for diagnosis and therapy monitoring. Mol Cancer Ther 2:419–426PubMedGoogle Scholar
  11. 11.
    Histed SN, Lindenberg ML, Mena E et al (2012) Review of functional/anatomical imaging in oncology. Nucl Med Commun 33:349–361CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kwee TC, Takahara T, Ochiai R et al (2010) Complementary roles of whole-body diffusion-weighted MRI and 18F-FDG PET: the state of the art and potential applications. J Nucl Med 51:1549–1558CrossRefPubMedGoogle Scholar
  13. 13.
    Kwee TC, Takahara T, Luijten PR et al (2010) ADC measurements of lymph nodes: inter- and intra-observer reproducibility study and an overview of the literature. Eur J Radiol 75:215–220CrossRefPubMedGoogle Scholar
  14. 14.
    Prenzel KL, Monig SP, Sinning JM et al (2003) Lymph node size and metastatic infiltration in non-small cell lung cancer. Chest 123:463–467CrossRefPubMedGoogle Scholar
  15. 15.
    Fueger BJ, Yeom K, Czernin J et al (2009) Comparison of CT, PET, and PET/CT for staging of patients with indolent non-Hodgkin’s lymphoma. Mol Imaging Biol 11:269–274CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Buchbender C, Heusner TA, Lauenstein TC et al (2012) Oncologic PET/MRI, part 2: bone tumors, soft-tissue tumors, melanoma, and lymphoma. J Nucl Med 53:1244–1252CrossRefPubMedGoogle Scholar
  17. 17.
    Littooij AS, Kwee TC, Barber I et al (2014) Whole-body MRI for initial staging of paediatric lymphoma: prospective comparison to an FDG-PET/CT-based reference standard. Eur Radiol 24:1153–1165CrossRefPubMedGoogle Scholar
  18. 18.
    Drzezga A, Souvatzoglou M, Eiber M et al (2012) First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med 53:845–855CrossRefPubMedGoogle Scholar
  19. 19.
    Tian J, Fu L, Yin D et al (2014) Does the novel integrated PET/MRI offer the same diagnostic performance as PET/CT for oncological indications? PLoS One 9, e90844CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hirsch FW, Sattler B, Sorge I et al (2013) PET/MR in children. Initial clinical experience in paediatric oncology using an integrated PET/MR scanner. Pediatr Radiol 43:860–875CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Schafer JF, Gatidis S, Schmidt H et al (2014) Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology 273:220–231CrossRefPubMedGoogle Scholar
  22. 22.
    Martinez-Moller A, Souvatzoglou M, Delso G et al (2009) Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 50:520–526CrossRefPubMedGoogle Scholar
  23. 23.
    Meignan M, Gallamini A, Haioun C (2009) Report on the first international workshop on interim-PET-scan in lymphoma. Leuk Lymphoma 50:1257–1260CrossRefPubMedGoogle Scholar
  24. 24.
    Cheson BD, Pfistner B, Juweid ME et al (2007) Revised response criteria for malignant lymphoma. J Clin Oncol 25:579–586CrossRefPubMedGoogle Scholar
  25. 25.
    Shah B, Srivastava N, Hirsch AE et al (2012) Intra-reader reliability of FDG PET volumetric tumor parameters: effects of primary tumor size and segmentation methods. Ann Nucl Med 26:707–714CrossRefPubMedGoogle Scholar
  26. 26.
    ICRP (2008) Radiation dose to patients from radiopharmaceuticals. Addendum 3 to ICRP Publication 53. ICRP Publication 106. Approved by the Commission in October 2007. Ann ICRP 38:1–197CrossRefPubMedGoogle Scholar
  27. 27.
    Theocharopoulos N, Damilakis J, Perisinakis K et al (2006) Estimation of effective doses to adult and pediatric patients from multislice computed tomography: a method based on energy imparted. Med Phys 33:3846–3856CrossRefPubMedGoogle Scholar
  28. 28.
    Mukaka MM (2012) Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Med J 24:69–71PubMedPubMedCentralGoogle Scholar
  29. 29.
    Biederer J, Hintze C, Fabel M (2008) MRI of pulmonary nodules: technique and diagnostic value. Cancer Imaging 8:125–130CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Heusch P, Buchbender C, Beiderwellen K et al (2013) Standardized uptake values for [18F] FDG in normal organ tissues: comparison of whole-body PET/CT and PET/MRI. Eur J Radiol 82:870–876Google Scholar
  31. 31.
    Heacock L, Weissbrot J, Raad R et al (2015) PET/MRI for the evaluation of patients with lymphoma: initial observations. AJR Am J Roentgenol 204:842–848CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lyons K, Seghers V, Sorensen JI et al (2015) Comparison of standardized uptake values in normal structures between PET/CT and PET/MRI in a tertiary pediatric hospital: a prospective study. AJR Am J Roentgenol 205:1094–1101CrossRefPubMedGoogle Scholar
  33. 33.
    Westerterp M, Pruim J, Oyen W et al (2007) Quantification of FDG PET studies using standardised uptake values in multi-centre trials: effects of image reconstruction, resolution and ROI definition parameters. Eur J Nucl Med Mol Imaging 34:392–404CrossRefPubMedGoogle Scholar
  34. 34.
    Delso G, Furst S, Jakoby B et al (2011) Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 52:1914–1922CrossRefPubMedGoogle Scholar
  35. 35.
    Jakoby BW, Bercier Y, Watson CC et al (2009) Performance characteristics of a new LSO PET/CT scanner with extended axial field-of-view and PSF reconstruction. IEEE Trans Nucl Sci 56:633–639CrossRefGoogle Scholar
  36. 36.
    Chin BB, Green ED, Turkington TG et al (2009) Increasing uptake time in FDG-PET: standardized uptake values in normal tissues at 1 versus 3h. Mol Imaging Biol 11:118–122CrossRefPubMedGoogle Scholar
  37. 37.
    Keller SH, Holm S, Hansen AE et al (2013) Image artifacts from MR-based attenuation correction in clinical, whole-body PET/MRI. MAGMA 26:173–181CrossRefPubMedGoogle Scholar
  38. 38.
    Wurslin C, Schmidt H, Martirosian P et al (2013) Respiratory motion correction in oncologic PET using T1-weighted MR imaging on a simultaneous whole-body PET/MR system. J Nucl Med 54:464–471CrossRefPubMedGoogle Scholar
  39. 39.
    Nehmeh SA, Erdi YE, Ling CC et al (2002) Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer. Med Phys 29:366–371CrossRefPubMedGoogle Scholar
  40. 40.
    Juweid ME, Stroobants S, Hoekstra OS et al (2007) Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol 25:571–578CrossRefPubMedGoogle Scholar
  41. 41.
    Weiler-Sagie M, Bushelev O, Epelbaum R et al (2010) (18)F-FDG avidity in lymphoma readdressed: a study of 766 patients. J Nucl Med 51:25–30CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Maria Rosana Ponisio
    • 1
    Email author
  • Jonathan McConathy
    • 1
    • 2
  • Richard Laforest
    • 1
  • Geetika Khanna
    • 1
  1. 1.Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisUSA
  2. 2.Department of RadiologyUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations