Pediatric Radiology

, Volume 45, Issue 7, pp 965–976 | Cite as

Radiographic features of the skeleton in disorders of post-squalene cholesterol biosynthesis

  • Massimiliano Rossi
  • Christine M. Hall
  • Raymonde Bouvier
  • Sophie Collardeau-Frachon
  • Frédérique Le Breton
  • Martine Bucourt
  • Marie Pierre Cordier
  • Christine Vianey-Saban
  • Giancarlo Parenti
  • Generoso Andria
  • Martine Le Merrer
  • Patrick Edery
  • Amaka C. OffiahEmail author


Disorders of post-squalene cholesterol biosynthesis are inborn errors of metabolism characterised by multiple congenital abnormalities, including significant skeletal involvement. The most frequent and best-characterised example is the Smith–Lemli–Opitz syndrome. Nine other disorders are known, namely autosomal-recessive Antley–Bixler syndrome, Greenberg dysplasia, X-linked dominant chondrodysplasia punctata, X-linked recessive male emopamil-binding protein deficiency, CHILD syndrome, CK syndrome, sterol C4 methyloxidase-like deficiency, desmosterolosis and lathosterolosis. This study provides an overview of the radiologic features observed in these diseases. A common pattern of limb abnormalities is recognisable, including polydactyly, which is typically post-axial and rarely interdigital and can involve all four limbs, and syndactyly of the toes. Chondrodysplasia punctata is specifically associated with a subgroup of disorders of cholesterol biosynthesis (Greenberg dysplasia, CHILD syndrome, X-linked dominant chondrodysplasia punctata, male emopamil-binding protein deficiency). The possible occurrence of epiphyseal stippling in the Smith–Lemli–Opitz syndrome, initially reported, does not appear to be confirmed. Stippling is also associated with other congenital disorders such as chromosomal abnormalities, brachytelephalangic chondrodysplasia punctata (X-linked recessive chondrodysplasia punctata, disruptions of vitamin K metabolism, maternal autoimmune diseases), rhizomelic chondrodysplasia punctata (peroxisomal disorders) and lysosomal storage disorders. In the differential diagnosis of epiphyseal stippling, a moth-eaten appearance of bones, asymmetry, or presence of a common pattern of limb abnormalities indicate inborn errors of cholesterol biosynthesis. We highlight the specific differentiating radiologic features of disorders of post-squalene cholesterol biosynthesis.


Disorders of cholesterol biosynthesis Skeletal dysplasia Polydactyly Syndactyly Stippling Chondrodysplasia punctata Radiography Foetus Child 


Conflicts of interest



  1. 1.
    Porter FD, Herman GE (2011) Malformation syndromes caused by disorders of cholesterol synthesis. J Lipid Res 52:6–34PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Offiah AC, Mansour S, Jeffrey I et al (2003) Greenberg dysplasia (HEM) and lethal X linked dominant Conradi–Hunermann chondrodysplasia punctata (CDPX2): presentation of two cases with overlapping phenotype. J Med Genet 40:e129PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Horn LC, Faber R, Meiner A et al (2000) Greenberg dysplasia: first reported case with additional non-skeletal malformations and without consanguinity. Prenat Diagn 20:1008–1011PubMedCrossRefGoogle Scholar
  4. 4.
    Konstantinidou A, Karadimas C, Waterham HR et al (2008) Pathologic, radiographic and molecular findings in three fetuses diagnosed with HEM/Greenberg skeletal dysplasia. Prenat Diagn 28:309–312PubMedCrossRefGoogle Scholar
  5. 5.
    Trajkovski Z, Vrcakovski M, Saveski J et al (2002) Greenberg dysplasia (hydrops-ectopic calcification-moth-eaten skeletal dysplasia): prenatal ultrasound diagnosis and review of literature. Am J Med Genet 111:415–419PubMedCrossRefGoogle Scholar
  6. 6.
    Wassif CA, Brownson KE, Sterner AL et al (2007) HEM dysplasia and ichthyosis are likely laminopathies and not due to 3beta-hydroxysterol Delta14-reductase deficiency. Hum Molec Genet 16:1176–1187PubMedCrossRefGoogle Scholar
  7. 7.
    Waterham HR, Koster J, Mooyer P et al (2003) Autosomal recessive HEM/Greenberg skeletal dysplasia is caused by 3 beta-hydroxysterol delta 14-reductase deficiency due to mutations in the lamin B receptor gene. Am J Hum Genet 72:1013–1017PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Hoffmann K, Dreger CK, Olins AL et al (2002) Mutations in the gene encoding the lamin B receptor produce an altered nuclear morphology in granulocytes (Pelger-Huet anomaly). Nat Genet 31:410–414PubMedGoogle Scholar
  9. 9.
    Oosterwijk JC, Mansour S, van Noort G et al (2003) Congenital abnormalities reported in Pelger-Huet homozygosity as compared to Greenberg/HEM dysplasia: highly variable expression of allelic phenotypes. J Med Genet 40:937–941PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Borovik L, Modaff P, Waterham HR et al (2013) Pelger-huet anomaly and a mild skeletal phenotype secondary to mutations in LBR. Am J Med Genet A 161:2066–2073CrossRefGoogle Scholar
  11. 11.
    Clayton P, Fischer B, Mann A et al (2010) Mutations causing Greenberg dysplasia but not Pelger anomaly uncouple enzymatic from structural functions of a nuclear membrane protein. Nucleus 1:354–366PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Chitayat D, Gruber H, Mullen BJ et al (1993) Hydrops-ectopic calcification-moth-eaten skeletal dysplasia (Greenberg dysplasia): prenatal diagnosis and further delineation of a rare genetic disorder. Am J Med Genet 47:272–277PubMedCrossRefGoogle Scholar
  13. 13.
    Bouvier R, Cordier M, Loget P et al (2008) Maladies métaboliques. In: Pathologie fœtale et placentaire pratique. Sauramps Médical, Montpellier, France, pp 465–484Google Scholar
  14. 14.
    Hall CM, Offiah A, Forzano F et al (2012) Fetal and perinatal skeletal dysplasias: an atlas of multimodality imaging. Radcliffe Publishing Ltd., London, UKGoogle Scholar
  15. 15.
    Derry JM, Gormally E, Means GD et al (1999) Mutations in a delta 8-delta 7 sterol isomerase in the tattered mouse and X-linked dominant chondrodysplasia punctata. Nat Genet 22:286–290PubMedCrossRefGoogle Scholar
  16. 16.
    Braverman N, Lin P, Moebius FF et al (1999) Mutations in the gene encoding 3 beta-hydroxysteroid-delta 8, delta 7-isomerase cause X-linked dominant Conradi-Hunermann syndrome. Nat Genet 22:291–294PubMedCrossRefGoogle Scholar
  17. 17.
    Tysoe C, Law CJ, Caswell R et al (2008) Prenatal testing for a novel EBP missense mutation causing X-linked dominant chondrodysplasia punctata. Prenat Diagn 28:384–388PubMedCrossRefGoogle Scholar
  18. 18.
    Whittock NV, Izatt L, Simpson-Dent SL et al (2003) Molecular prenatal diagnosis in a case of an X-linked dominant chondrodysplasia punctata. Prenat Diagn 23:701–704PubMedCrossRefGoogle Scholar
  19. 19.
    Kelley RI, Wilcox WG, Smith M et al (1999) Abnormal sterol metabolism in patients with Conradi–Hunermann–Happle syndrome and sporadic lethal chondrodysplasia punctata. Am J Med Genet 83:213–219PubMedCrossRefGoogle Scholar
  20. 20.
    Akiyama M, Sakai K, Hayasaka K et al (2009) Conradi–Hunermann–Happle syndrome with abnormal lamellar granule contents. Br J Dermatol 160:1335–1337PubMedCrossRefGoogle Scholar
  21. 21.
    Umranikar S, Glanc P, Unger S et al (2006) X-linked dominant chondrodysplasia punctata: prenatal diagnosis and autopsy findings. Prenat Diagn 26:1235–1240PubMedCrossRefGoogle Scholar
  22. 22.
    DiPreta EA, Smith KJ, Skelton H (2000) Cholesterol metabolism defect associated with Conradi–Hunerman–Happle [stet] syndrome. Int J Dermatol 39:846–850PubMedCrossRefGoogle Scholar
  23. 23.
    Steijlen PM, van Geel M, Vreeburg M et al (2007) Novel EBP gene mutations in Conradi–Hunermann–Happle syndrome. Br J Dermatol 157:1225–1229PubMedCrossRefGoogle Scholar
  24. 24.
    Herman GE, Kelley RI, Pureza V et al (2002) Characterization of mutations in 22 females with X-linked dominant chondrodysplasia punctata (Happle syndrome). Genet Med 4:434–438PubMedCrossRefGoogle Scholar
  25. 25.
    Has C, Bruckner-Tuderman L, Muller D et al (2000) The Conradi–Hunermann–Happle syndrome (CDPX2) and emopamil binding protein: novel mutations, and somatic and gonadal mosaicism. Hum Mol Genet 9:1951–1955PubMedCrossRefGoogle Scholar
  26. 26.
    Rakheja D, Read CP, Hull D et al (2007) A severely affected female infant with X-linked dominant chondrodysplasia punctata: a case report and a brief review of the literature. Pediatr Dev Pathol 10:142–148PubMedCrossRefGoogle Scholar
  27. 27.
    Whittock NV, Izatt L, Mann A et al (2003) Novel mutations in X-linked dominant chondrodysplasia punctata (CDPX2). J Invest Dermatol 121:939–942PubMedCrossRefGoogle Scholar
  28. 28.
    Hoang MP, Carder KR, Pandya AG et al (2004) Ichthyosis and keratotic follicular plugs containing dystrophic calcification in newborns: distinctive histopathologic features of X-linked dominant chondrodysplasia punctata (Conradi–Hunermann–Happle syndrome). Am J Dermatopathol 26:53–58PubMedCrossRefGoogle Scholar
  29. 29.
    Shirahama S, Miyahara A, Kitoh H et al (2003) Skewed X-chromosome inactivation causes intra-familial phenotypic variation of an EBP mutation in a family with X-linked dominant chondrodysplasia punctata. Hum Genet 112:78–83PubMedCrossRefGoogle Scholar
  30. 30.
    Grange DK, Kratz LE, Braverman NE et al (2000) CHILD syndrome caused by deficiency of 3beta-hydroxysteroid-delta8, delta7-isomerase. Am J Med Genet 90:328–335PubMedCrossRefGoogle Scholar
  31. 31.
    Happle R, Konig A, Grzeschik KH (2000) Behold the CHILD, it’s only one: CHILD syndrome is not caused by deficiency of 3 beta-hydroxysteroid-Delta 8, Delta 7-isomerase. Am J Med Genet 94:341–343PubMedCrossRefGoogle Scholar
  32. 32.
    Ausavarat S, Tanpaiboon P, Tongkobpetch S et al (2008) Two novel EBP mutations in Conradi–Hunermann–Happle syndrome. Eur J Dermatol 18:391–393PubMedGoogle Scholar
  33. 33.
    Hellenbroich Y, Grzeschik KH, Krapp M et al (2007) Reduced penetrance in a family with X-linked dominant chondrodysplasia punctata. Eur J Med Gen 50:392–398CrossRefGoogle Scholar
  34. 34.
    Ikegawa S, Ohashi H, Ogata T et al (2000) Novel and recurrent EBP mutations in X-linked dominant chondrodysplasia punctata. Am J Med Genet 94:300–305PubMedCrossRefGoogle Scholar
  35. 35.
    Aughton DJ, Kelley RI, Metzenberg A et al (2003) X-linked dominant chondrodysplasia punctata (CDPX2) caused by single gene mosaicism in a male. Am J Med Genet A 116A:255–260PubMedCrossRefGoogle Scholar
  36. 36.
    Arnold AW, Bruckner-Tuderman L, Has C et al (2012) Conradi–Hunermann–Happle syndrome in males vs. MEND syndrome (male EBP disorder with neurological defects). Br J Dermatol 166:1309–1313PubMedCrossRefGoogle Scholar
  37. 37.
    Sutphen R, Amar MJ, Kousseff BG et al (1995) XXY male with X-linked dominant chondrodysplasia punctata (Happle syndrome). Am J Med Genet 57:489–492PubMedCrossRefGoogle Scholar
  38. 38.
    Furtado LV, Bayrak-Toydemir P, Hulinsky B et al (2010) A novel X-linked multiple congenital anomaly syndrome associated with an EBP mutation. Am J Med Genet A 152A:2838–2844PubMedCrossRefGoogle Scholar
  39. 39.
    Milunsky JM, Maher TA, Metzenberg AB (2003) Molecular, biochemical, and phenotypic analysis of a hemizygous male with a severe atypical phenotype for X-linked dominant Conradi–Hunermann–Happle syndrome and a mutation in EBP. Am J Med Genet A 116:249–254CrossRefGoogle Scholar
  40. 40.
    Herman GE, Kratz L (2012) Disorders of sterol synthesis: beyond Smith–Lemli–Opitz syndrome. Am J Med Genet C: Semin Med Genet 160C:301–321CrossRefGoogle Scholar
  41. 41.
    Happle R (2011) A novel X-linked phenotype caused by hypomorphic EBP mutations. Am J Med Genet A 155:1770–1771CrossRefGoogle Scholar
  42. 42.
    Kelley RI, Kratz LE, Glaser RL et al (2002) Abnormal sterol metabolism in a patient with Antley–Bixler syndrome and ambiguous genitalia. Am J Med Genet 110:95–102PubMedCrossRefGoogle Scholar
  43. 43.
    Fluck CE, Tajima T, Pandey AV et al (2004) Mutant P450 oxidoreductase causes disordered steroidogenesis with and without Antley–Bixler syndrome. Nat Genet 36:228–230PubMedCrossRefGoogle Scholar
  44. 44.
    Konig A, Happle R, Bornholdt D et al (2000) Mutations in the NSDHL gene, encoding a 3beta-hydroxysteroid dehydrogenase, cause CHILD syndrome. Am J Med Genet 90:339–346PubMedCrossRefGoogle Scholar
  45. 45.
    Bornholdt D, Konig A, Happle R et al (2005) Mutational spectrum of NSDHL in CHILD syndrome. J Med Genet 42:e17PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Ishibashi M, Matsuda F, Oka H et al (2006) Abnormal lamellar granules in a case of CHILD syndrome. J Cutan Pathol 33:447–453PubMedCrossRefGoogle Scholar
  47. 47.
    Happle R (2010) The group of epidermal nevus syndromes part I. Well defined phenotypes. J Am Acad Dermatol 63:1–22PubMedCrossRefGoogle Scholar
  48. 48.
    McLarren KW, Severson TM, du Souich C et al (2010) Hypomorphic temperature-sensitive alleles of NSDHL cause CK syndrome. Am J Hum Genet 87:905–914PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Du Souich C, Chou A, Yin J et al (2009) Characterization of a new X-linked mental retardation syndrome with microcephaly, cortical malformation, and thin habitus. Am J Med Genet A 149:2469–2478CrossRefGoogle Scholar
  50. 50.
    Tarpey PS, Smith R, Pleasance E et al (2009) A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation. Nat Genet 41:535–543PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    He M, Kratz LE, Michel JJ et al (2011) Mutations in the human SC4MOL gene encoding a methyl sterol oxidase cause psoriasiform dermatitis, microcephaly, and developmental delay. J Clin Invest 121:976–984PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Rossi M, D’Armiento M, Parisi I et al (2007) Clinical phenotype of lathosterolosis. Am J Med Genet A 143:2371–2381CrossRefGoogle Scholar
  53. 53.
    Kelley RI, Hennekam RC (2000) The Smith–Lemli–Opitz syndrome. J Med Genet 37:321–335PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Ryan AK, Bartlett K, Clayton P et al (1998) Smith–Lemli–Opitz syndrome: a variable clinical and biochemical phenotype. J Med Genet 35:558–565PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Quelin C, Loget P, Verloes A et al (2012) Phenotypic spectrum of fetal Smith–Lemli–Opitz syndrome. Eur J Med Genet 55:81–90PubMedCrossRefGoogle Scholar
  56. 56.
    De Jong G, Kirby PA, Muller LM (1998) RSH (Smith–Lemli–Opitz) syndrome: ‘severe’ phenotype with ectrodactyly. Am J Med Genet 75:283–287PubMedCrossRefGoogle Scholar
  57. 57.
    Warman ML, Cormier-Daire V, Hall C et al (2011) Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet A 155:943–968PubMedCentralCrossRefGoogle Scholar
  58. 58.
    Wallace M, Zori RT, Alley T et al (1994) Smith–Lemli–Opitz syndrome in a female with a de novo, balanced translocation involving 7q32: probable disruption of an SLOS gene. Am J Med Genet 50:368–374PubMedCrossRefGoogle Scholar
  59. 59.
    Nowaczyk MJ (2011) Epiphyseal stippling is not a feature of 7-dehydrocholesterol reductase deficiency (Smith–Lemli–Opitz syndrome). Am J Med Genet A 155:940–941CrossRefGoogle Scholar
  60. 60.
    Brunetti-Pierri N, Corso G, Rossi M et al (2002) Lathosterolosis, a novel multiple-malformation/mental retardation syndrome due to deficiency of 3beta-hydroxysteroid-delta5-desaturase. Am J Hum Genet 71:952–958PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Rossi M, Vajro P, Iorio R et al (2005) Characterization of liver involvement in defects of cholesterol biosynthesis: long-term follow-up and review. Am J Med Genet A 132:144–151CrossRefGoogle Scholar
  62. 62.
    Parnes S, Hunter AG, Jimenez C et al (1990) Apparent Smith–Lemli–Opitz syndrome in a child with a previously undescribed form of mucolipidosis not involving the neurons. Am J Med Genet 35:397–405PubMedCrossRefGoogle Scholar
  63. 63.
    Krakowiak PA, Wassif CA, Kratz L et al (2003) Lathosterolosis: an inborn error of human and murine cholesterol synthesis due to lathosterol 5-desaturase deficiency. Hum Mol Genet 12:1631–1641PubMedCrossRefGoogle Scholar
  64. 64.
    Ho AC, Fung CW, Siu TS et al (2014) Lathosterolosis: a disorder of cholesterol biosynthesis resembling Smith–Lemli–Opitz syndrome. JIMD Rep 12:129–134PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Schaaf CP, Koster J, Katsonis P et al (2011) Desmosterolosis-phenotypic and molecular characterization of a third case and review of the literature. Am J Med Genet A 155:1597–1604CrossRefGoogle Scholar
  66. 66.
    Andersson HC, Kratz L, Kelley R (2002) Desmosterolosis presenting with multiple congenital anomalies and profound developmental delay. Am J Med Genet 113:315–319PubMedCrossRefGoogle Scholar
  67. 67.
    Waterham HR, Koster J, Romeijn GJ et al (2001) Mutations in the 3beta-hydroxysterol Delta24-reductase gene cause desmosterolosis, an autosomal recessive disorder of cholesterol biosynthesis. Am J Hum Genet 69:685–694PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    FitzPatrick DR, Keeling JW, Evans MJ et al (1998) Clinical phenotype of desmosterolosis. Am J Med Genet 75:145–152PubMedCrossRefGoogle Scholar
  69. 69.
    Clayton P, Mills K, Keeling J et al (1996) Desmosterolosis: a new inborn error of cholesterol biosynthesis. Lancet 348:404PubMedCrossRefGoogle Scholar
  70. 70.
    Villavicencio EH, Walterhouse DO, Iannaccone PM (2000) The sonic hedgehog-patched-gli pathway in human development and disease. Am J Hum Genet 67:1047–1054PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Irving MD, Chitty LS, Mansour S et al (2008) Chondrodysplasia punctata: a clinical diagnostic and radiological review. Clin Dysmorphol 17:229–241PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Massimiliano Rossi
    • 1
    • 2
  • Christine M. Hall
    • 3
  • Raymonde Bouvier
    • 4
  • Sophie Collardeau-Frachon
    • 4
  • Frédérique Le Breton
    • 5
  • Martine Bucourt
    • 6
  • Marie Pierre Cordier
    • 1
  • Christine Vianey-Saban
    • 7
  • Giancarlo Parenti
    • 8
  • Generoso Andria
    • 8
  • Martine Le Merrer
    • 9
  • Patrick Edery
    • 1
    • 2
  • Amaka C. Offiah
    • 10
    Email author
  1. 1.Genetic Department, Referral Centre for Developmental Abnormalities, Femme-Mère-Enfant HospitalHospices Civils de LyonBron cedexFrance
  2. 2.INSERM U1028 UMR CNRS 5,292, UCBL, CRNL TIGER Team, CH le VinaterBron cedexFrance
  3. 3.Retired from Department of Radiology, Great Ormond Street HospitalLondonUK
  4. 4.Department of Pathology, CBPEHospices Civils de LyonBron cedexFrance
  5. 5.Department of Pathology, Croix-Rousse HospitalHospices Civils de LyonLyonFrance
  6. 6.Foetopathology Unit, Jean Verdier HospitalAP-HPBondyFrance
  7. 7.Department of Inborn Errors of Metabolism and Neonatal Screening, CBPEHospices Civils de LyonBron cedexFrance
  8. 8.Department of Translational Medical Sciences, Section of PediatricsFederico II UniversityNaplesItaly
  9. 9.Genetic Department, Referal Centre for Skeletal Dysplasias, Institut Imagine, Necker-Enfants Malades HospitalAP-HPParisUK
  10. 10.Radiology Department, Children’s Hospital, Academic Unit of Child Health Room C4Stephenson Wing Sheffield Children’s NHS Foundation Trust Western BankSheffieldUK

Personalised recommendations