Advertisement

Pediatric Radiology

, Volume 45, Issue 4, pp 593–605 | Cite as

Common normal variants of pediatric vertebral development that mimic fractures: a pictorial review from a national longitudinal bone health study

  • Jacob L. Jaremko
  • Kerry Siminoski
  • Gregory B. Firth
  • Mary Ann Matzinger
  • Nazih Shenouda
  • Victor N. Konji
  • Johannes Roth
  • Anne Marie Sbrocchi
  • Martin H. Reed
  • Mary Kathleen O’Brien
  • Helen Nadel
  • Scott McKillop
  • Reinhard Kloiber
  • Josée Dubois
  • Craig Coblentz
  • Martin Charron
  • Leanne M. Ward
  • Canadian STOPP Consortium National Pediatric Bone Health Working Group
Pictorial Essay

Abstract

Children with glucocorticoid-treated illnesses are at risk for osteoporotic vertebral fractures, and growing awareness of this has led to increased monitoring for these fractures. However scant literature describes developmental changes in vertebral morphology that can mimic fractures. The goal of this paper is to aid in distinguishing between normal variants and fractures. We illustrate differences using lateral spine radiographs obtained annually from children recruited to the Canada-wide STeroid-Associated Osteoporosis in the Pediatric Population (STOPP) observational study, in which 400 children with glucocorticoid-treated leukemia, rheumatic disorders, and nephrotic syndrome were enrolled near glucocorticoid initiation and followed prospectively for 6 years. Normal variants mimicking fractures exist in all regions of the spine and fall into two groups. The first group comprises variants mimicking pathological vertebral height loss, including not-yet-ossified vertebral apophyses superiorly and inferiorly, which can lead to a vertebral shape easily over-interpreted as anterior wedge fracture, physiological beaking, or spondylolisthesis associated with shortened posterior vertebral height. The second group includes variants mimicking other radiologic signs of fractures: anterior vertebral artery groove resembling an anterior buckle fracture, Cupid’s bow balloon disk morphology, Schmorl nodes mimicking concave endplate fractures, and parallax artifact resembling endplate interruption or biconcavity. If an unexpected vertebral body contour is detected, careful attention to its location, detailed morphology, and (if available) serial changes over time may clarify whether it is a fracture requiring change in management or simply a normal variant. Awareness of the variants described in this paper can improve accuracy in the diagnosis of pediatric vertebral fractures.

Keywords

Osteoporosis Normal variants Spine Fracture Radiography Child 

Notes

Acknowledgments

This study was primarily funded by an operating grant from the Canadian Institutes for Health Research (FRN 64285). Additional funding for this work has been provided to Dr. Leanne Ward by the Canadian Institutes for Health Research New Investigator Program, the Canadian Child Health Clinician Scientist Career Enhancement Program, a University of Ottawa Research Chair Award and the CHEO Departments of Pediatrics and Surgery. This work was also supported by the Children’s Hospital of Eastern Ontario Research Institute and the University of Alberta Women and Children’s Health Research Institute.

The Canadian STOPP Consortium would like to thank the following individuals:

The children and their families who participated in the study and without whom the STOPP study would not have been possible;

Research associates who managed the study at the co-ordinating center (the Children’s Hospital of Eastern Ontario, Ottawa, Ontario): Elizabeth Sykes (STOPP Project Manager), Maya Scharke (STOPP Data Analyst and Database Manager), Monica Tomiak (Statistical Analyses), Victor Konji (STOPP Publications and Presentations Committee Liaison), Steve Anderson (Children’s Hospital of Eastern Ontario Pediatric Bone Health Program Research Manager), Catherine Riddell (STOPP National Study Monitor);

Research associates who took care of the patients from the following institutions: Alberta Children’s Hospital, Calgary, Alberta: Eileen Pyra; British Columbia Children’s Hospital, Vancouver, British Columbia: Terry Viczko, Sandy Hwang, Angelyne Sarmiento; Children’s Hospital of Eastern Ontario, Ottawa, Ontario: Heather Cosgrove, Josie MacLennan, Catherine Riddell; Children’s Hospital, London Health Sciences Centre, London, Ontario: Vinolia ArthurHayward, Leila MacBean, Mala Ramu; McMaster Children’s Hospital, Hamilton, Ontario: Susan Docherty-Skippen; IWK Health Center, Halifax, Nova Scotia: Cindy Campbell, Aleasha Warner; Montréal Children’s Hospital, Montréal, Québec: Valérie Gagné, Diane Laforte, Maritza Laprise, Ste. Justine Hospital, Montréal, Québec: Claude Belleville, Natacha Gaulin Marion; Stollery Children’s Hospital, Edmonton, Alberta: Ronda Blasco, Germaine McInnes, Amanda Mullins; Toronto Hospital for Sick Children, Toronto, Ontario: Alexandra Airhart, Michele Petrovic, Nicole Sarvaria; Winnipeg Children’s Hospital, Winnipeg, Manitoba: Dan Catte, Erika Bloomfield, Jeannine Schellenberg; as well as the research nurses, support staff and all the STOPP collaborators from the various divisions of Nephrology, Oncology, Rheumatology and Radiology who have contributed to the care of the children enrolled in the study.

Conflicts of interest

None

References

  1. 1.
    Leroux J, Vivier PH, Ould Slimane M et al (2013) Early diagnosis of thoracolumbar spine fractures in children. A prospective study. Orthop Traumatol Surg Res 99:60–65CrossRefPubMedGoogle Scholar
  2. 2.
    Halton J, Gaboury I, Grant R et al (2009) Advanced vertebral fracture among newly diagnosed children with acute lymphoblastic leukemia: results of the Canadian steroid-associated osteoporosis in the pediatric population (STOPP) research program. J Bone Miner Res 24:1326–1334CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Alos N, Grant RM, Ramsay T et al (2012) High incidence of vertebral fractures in children with acute lymphoblastic leukemia 12 months after the initiation of therapy. J Clin Oncol 30:2760–2767CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Huber AM, Gaboury I, Cabral DA et al (2010) Prevalent vertebral fractures among children initiating glucocorticoid therapy for the treatment of rheumatic disorders. Arthritis Care Res (Hoboken) 62:516–526CrossRefGoogle Scholar
  5. 5.
    Rodd C, Lang B, Ramsay T et al (2012) Incident vertebral fractures among children with rheumatic disorders 12 months after glucocorticoid initiation: a national observational study. Arthritis Care Res (Hoboken) 64:122–131CrossRefGoogle Scholar
  6. 6.
    Feber J, Gaboury I, Ni A et al (2012) Skeletal findings in children recently initiating glucocorticoids for the treatment of nephrotic syndrome. Osteoporos Int 23:751–760CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Phan V, Blydt-Hansen T, Feber J et al (2014) Skeletal findings in the first 12 months following initiation of glucocorticoid therapy for pediatric nephrotic syndrome. Osteoporos Int 25:627–637CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Siminoski K, Lee KC, Jen H et al (2012) Anatomical distribution of vertebral fractures: comparison of pediatric and adult spines. Osteoporos Int 23:1999–2008CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Moore KL, Persaud TVN (1993) The skeletal system. The developing human: clinically oriented embryology. W.B. Saunders, Philadelphia, PAGoogle Scholar
  10. 10.
    Resnick D, Niwayama G (1978) Intravertebral disk herniations: cartilaginous (Schmorl’s) nodes. Radiology 126:57–65CrossRefPubMedGoogle Scholar
  11. 11.
    Bagnall KM, Harris PF, Jones PR (1977) A radiographic study of the human fetal spine. 2. The sequence of development of ossification centres in the vertebral column. J Anat 124:791–802PubMedCentralPubMedGoogle Scholar
  12. 12.
    Bick EM, Copel JW (1950) Longitudinal growth of the human vertebra; a contribution to human osteogeny. J Bone Joint Surg Am 32:803–814PubMedGoogle Scholar
  13. 13.
    Yu SW, Sether LA, Ho PS et al (1988) Tears of the anulus fibrosus: correlation between MR and pathologic findings in cadavers. AJNR Am J Neuroradiol 9:367–370PubMedGoogle Scholar
  14. 14.
    Jones MD, Pais MJ, Omiya B (1988) Bony overgrowths and abnormal calcifications about the spine. Radiol Clin North Am 26:1213–1234PubMedGoogle Scholar
  15. 15.
    Cil A, Yazici M, Uzumcugil A et al (2005) The evolution of sagittal segmental alignment of the spine during childhood. Spine 30:93–100PubMedGoogle Scholar
  16. 16.
    Clowes JA, Eastell R (2008) Vertebral fracture assessment. In: Rosen CJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 7th edn. American Society for Bone and Mineral Research, Washington DC, pp 186–193CrossRefGoogle Scholar
  17. 17.
    Lentle BC, Brown JP, Khan A et al (2007) Recognizing and reporting vertebral fractures: reducing the risk of future osteoporotic fractures. Can Assoc Radiol J 58:27–36PubMedGoogle Scholar
  18. 18.
    Pandya NA, Meller ST, MacVicar D et al (2001) Vertebral compression fractures in acute lymphoblastic leukaemia and remodelling after treatment. Arch Dis Child 85:492–493Google Scholar
  19. 19.
    Bjerregaard LL, Rosthooj S (2002) Vertebral compression and eosinophilia in a child with acute lymphatic leukemia. J Pediatr Hematol Oncol 24:313–315CrossRefPubMedGoogle Scholar
  20. 20.
    Oliveri MB, Mautalen CA, Rodriguez Fuchs CA et al (1991) Vertebral compression fractures at the onset of acute lymphoblastic leukemia in a child. Henry Ford Hosp Med J 39:45–48PubMedGoogle Scholar
  21. 21.
    Carberry GA, Pooler BD, Binkley N et al (2013) Unreported vertebral body compression fractures at abdominal multidetector CT. Radiology 268:120–126CrossRefPubMedGoogle Scholar
  22. 22.
    Jiang G, Eastell R, Barrington NA et al (2004) Comparison of methods for the visual identification of prevalent vertebral fracture in osteoporosis. Osteoporos Int 15:887–896CrossRefPubMedGoogle Scholar
  23. 23.
    Genant HK, Wu CY, van Kuijk C et al (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148CrossRefPubMedGoogle Scholar
  24. 24.
    Siminoski K, Lentle B, Matzinger MA et al (2014) Observer agreement in pediatric semiquantitative vertebral fracture diagnosis. Pediatr Radiol 44:457–466CrossRefPubMedGoogle Scholar
  25. 25.
    Giglio CA, Volpon JB (2007) Development and evaluation of thoracic kyphosis and lumbar lordosis during growth. J Child Orthop 1:187–193CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Gaca AM, Barnhart HX, Bisset GS 3rd (2010) Evaluation of wedging of lower thoracic and upper lumbar vertebral bodies in the pediatric population. AJR Am J Roentgenol 194:516–520CrossRefPubMedGoogle Scholar
  27. 27.
    Ferrar L, Jiang G, Armbrecht G et al (2007) Is short vertebral height always an osteoporotic fracture? The Osteoporosis and Ultrasound Study (OPUS). Bone 41:5–12CrossRefPubMedGoogle Scholar
  28. 28.
    Swischuk LE (1970) The beaked, notched, or hooked vertebra: its significance in infants and young children. Radiology 95:661–664CrossRefPubMedGoogle Scholar
  29. 29.
    Levin TL, Berdon WE, Lachman RS et al (1997) Lumbar gibbus in storage diseases and bone dysplasias. Pediatr Radiol 27:289–294CrossRefPubMedGoogle Scholar
  30. 30.
    Dietz GW, Christensen EE (1976) Normal ‘Cupid’s bow’ contour of the lower lumbar vertebrae. Radiology 121:577–579CrossRefPubMedGoogle Scholar
  31. 31.
    Tsuji H, Yoshioka T, Sainoh H (1985) Developmental balloon disc of the lumbar spine in healthy subjects. Spine 10:907–911CrossRefPubMedGoogle Scholar
  32. 32.
    Chan KK, Sartoris DJ, Haghighi P et al (1997) Cupid’s bow contour of the vertebral body: evaluation of pathogenesis with bone densitometry and imaging-histopathologic correlation. Radiology 202:253–256CrossRefPubMedGoogle Scholar
  33. 33.
    Kyere KA, Than KD, Wang AC et al (2012) Schmorl’s nodes. Eur Spine J 21:2115–2121CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Tsirikos AI, Jain AK (2011) Scheuermann’s kyphosis: current controversies. J Bone Joint Surg (Br) 93:857–864CrossRefGoogle Scholar
  35. 35.
    Lowe TG, Line BG (2007) Evidence based medicine: analysis of Scheuermann kyphosis. Spine 32:S115–S119CrossRefPubMedGoogle Scholar
  36. 36.
    McNaught JM (2006) A clinical and archaeological study of Schmorl’s nodes: using clinical data to understand the past. Doctoral thesis, Department of Archaeology. Durham University, Durham, NCGoogle Scholar
  37. 37.
    Madani G, Papadopoulou AM, Holloway B et al (2007) The radiological manifestations of sickle cell disease. Clin Radiol 62:528–538CrossRefPubMedGoogle Scholar
  38. 38.
    Chapelon E, Garabedian M, Brousse V et al (2009) Osteopenia and vitamin D deficiency in children with sickle cell disease. Eur J Haematol 83:572–578CrossRefPubMedGoogle Scholar
  39. 39.
    Hensinger RN (1983) Spondylolysis and spondylolisthesis in children. Instr Course Lect 32:132–151PubMedGoogle Scholar
  40. 40.
    Murase M (1989) Clinical and radiological surveys of lumbar spondylolysis in young soccer players. Nihon Seikeigeka Gakkai Zasshi 63:1297–1305PubMedGoogle Scholar
  41. 41.
    Huang RP, Bohlman HH, Thompson GH et al (2003) Predictive value of pelvic incidence in progression of spondylolisthesis. Spine 28:2381–2385CrossRefPubMedGoogle Scholar
  42. 42.
    Kumar R, Guinto FC Jr, Madewell JE et al (1988) The vertebral body: radiographic configurations in various congenital and acquired disorders. Radiographics 8:455–485CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jacob L. Jaremko
    • 1
  • Kerry Siminoski
    • 1
    • 2
  • Gregory B. Firth
    • 3
  • Mary Ann Matzinger
    • 4
  • Nazih Shenouda
    • 4
  • Victor N. Konji
    • 5
  • Johannes Roth
    • 6
  • Anne Marie Sbrocchi
    • 7
  • Martin H. Reed
    • 8
  • Mary Kathleen O’Brien
    • 9
  • Helen Nadel
    • 10
  • Scott McKillop
    • 11
  • Reinhard Kloiber
    • 12
  • Josée Dubois
    • 13
  • Craig Coblentz
    • 14
  • Martin Charron
    • 15
  • Leanne M. Ward
    • 6
  • Canadian STOPP Consortium National Pediatric Bone Health Working Group
  1. 1.Department of Radiology and Diagnostic Imaging, 2A2.41 WC Mackenzie Health Sciences CentreUniversity of AlbertaEdmontonCanada
  2. 2.Department of MedicineUniversity of AlbertaEdmontonCanada
  3. 3.Paediatric Orthopaedic UnitChris Hani Baragwanath Academic HospitalJohannesburgSouth Africa
  4. 4.Department of Diagnostic ImagingUniversity of OttawaOttawaCanada
  5. 5.Pediatric Bone Health Clinical Research ProgramChildren’s Hospital of Eastern OntarioOttawaCanada
  6. 6.Department of PediatricsUniversity of OttawaOttawaCanada
  7. 7.Department of PediatricsMcGill UniversityMontrealCanada
  8. 8.Department of RadiologyUniversity of ManitobaWinnipegCanada
  9. 9.Department Diagnostic ImagingDalhousie UniversityHalifaxCanada
  10. 10.Department of RadiologyUniversity of British ColumbiaVancouverCanada
  11. 11.Department of RadiologyUniversity of Western OntarioLondonCanada
  12. 12.Department of RadiologyUniversity of CalgaryCalgaryCanada
  13. 13.Department of RadiologyUniversite de MontrealMontrealCanada
  14. 14.Department of RadiologyMcMaster UniversityHamiltonCanada
  15. 15.Department of RadiologyUniversity of TorontoTorontoCanada

Personalised recommendations