Advertisement

Pediatric Radiology

, Volume 45, Issue 4, pp 582–589 | Cite as

Effectiveness of diffusion tensor imaging in assessing disease severity in Duchenne muscular dystrophy: preliminary study

  • Skorn PonrartanaEmail author
  • Leigh Ramos-Platt
  • Tishya Anne Leong Wren
  • Houchun Harry Hu
  • Thomas Gardner Perkins
  • Jonathan Mawlin Chia
  • Vicente Gilsanz
Original Article

Abstract

Background

There is currently a lack of suitable objective endpoints to measure disease progression in Duchenne muscular dystrophy (DMD). Emerging research suggests that diffusion tensor imaging (DTI) has potential as an outcome measure for the evaluation of skeletal muscle injury.

Objective

The objective of this study was to evaluate the potential of DTI as quantitative magnetic resonance imaging (MRI) markers of disease severity in DMD.

Materials and methods

Thirteen consecutive boys (8.9 years ± 3.0 years) with DMD were evaluated using DTI. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were compared with clinical outcome measures of manual muscle testing and MRI determinations of muscle fat fraction (MFF) in the right lower extremity.

Results

Both MRI measures of FA and ADC strongly correlated with age and muscle strength. Values for FA positively correlated with age and negatively correlated with muscle strength (r = 0.78 and −0.96; both P ≤ 0.002) while measures of ADC negatively correlated age, but positively correlated with muscle strength (r = −0.87 and 0.83; both P ≤ 0.0004). Additionally, ADC and FA strongly correlated with MFF (r = −0.891 and 0.894, respectively; both P ≤ 0.0001). Mean MMF was negatively correlated with muscle strength (r = −0.89, P = 0.0001).

Conclusion

DTI measures of muscle structure strongly correlated with muscle strength and adiposity in boys with DMD in this pilot study, although these markers may be more reflective of fat replacement rather than muscle damage in later stages of the disease. Further studies in presymptomatic younger children are needed to assess the ability of DTI to detect early changes in DMD.

Keywords

Diffusion tensor imaging Muscle Magnetic resonance imaging Duchenne muscular dystrophy 

Notes

Conflicts of interest

Dr. T. G. Perkins and Mr. J. M. Chia are employees of Philips Healthcare.

References

  1. 1.
    Bushby K, Finkel R, Birnkrant DJ et al (2009) Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol 9:77–93CrossRefPubMedGoogle Scholar
  2. 2.
    Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928CrossRefPubMedGoogle Scholar
  3. 3.
    Dubowitz V (1995) The muscular dystrophies. Muscle disorders in childhood. Saunders, London, pp 39–42Google Scholar
  4. 4.
    Kapsa R, Kornberg AJ, Byrne E (2003) Novel therapies for Duchenne muscular dystrophy. Lancet Neurol 2:299–310CrossRefPubMedGoogle Scholar
  5. 5.
    Bogdanovich S, Perkins KJ, Krag TO et al (2004) Therapeutics for Duchenne muscular dystrophy: current approaches and future directions. J Mol Med (Berl) 82:102–115CrossRefGoogle Scholar
  6. 6.
    Tidball JG, Spencer MJ (2003) Skipping to new gene therapies for muscular dystrophy. Nat Med 9:997–998CrossRefPubMedGoogle Scholar
  7. 7.
    Cyrulnik SE, Fee RJ, Batchelder A et al (2008) Cognitive and adaptive deficits in young children with Duchenne muscular dystrophy (DMD). J Int Neuropsychol Soc 14:853–861CrossRefPubMedGoogle Scholar
  8. 8.
    Escolar DM, Henricson EK, Mayhew J et al (2001) Clinical evaluator reliability for quantitative and manual muscle testing measures of strength in children. Muscle Nerve 24:787–793CrossRefPubMedGoogle Scholar
  9. 9.
    Schrama PP, Stenneberg MS, Lucas C et al (2014) Intra-examiner reliability of hand-held dynamometry in the upper extremity: a systematic review. Arch Phys Med Rehabil. doi: 10.1016/j.apmr.2014.05.019 PubMedGoogle Scholar
  10. 10.
    Stern LM, Caudrey DJ, Perrett LV et al (1984) Progression of muscular dystrophy assessed by computed tomography. Dev Med Child Neurol 26:569–573CrossRefPubMedGoogle Scholar
  11. 11.
    Scott OM, Hyde SA, Goddard C et al (1982) Quantitation of muscle function in children: a prospective study in Duchenne muscular dystrophy. Muscle Nerve 5:291–301CrossRefPubMedGoogle Scholar
  12. 12.
    Brooke MH, Fenichel GM, Griggs RC et al (1983) Clinical investigation in Duchenne dystrophy: 2. Determination of the “power” of therapeutic trials based on the natural history. Muscle Nerve 6:91–103CrossRefPubMedGoogle Scholar
  13. 13.
    Kilmer DD, Abresch RT, Fowler WM Jr (1993) Serial manual muscle testing in Duchenne muscular dystrophy. Arch Phys Med Rehabil 74:1168–1171PubMedGoogle Scholar
  14. 14.
    Brooke MH, Griggs RC, Mendell JR et al (1981) Clinical trial in Duchenne dystrophy. I. The design of the protocol. Muscle Nerve 4:186–197CrossRefPubMedGoogle Scholar
  15. 15.
    Pourmand R (ed) (2004) Diagnostic tests in neuromuscular disease. Saunders, Philadelphia, PAGoogle Scholar
  16. 16.
    Marden FA, Connolly AM, Siegel MJ et al (2005) Compositional analysis of muscle in boys with Duchenne muscular dystrophy using MR imaging. Skeletal Radiol 34:140–148CrossRefPubMedGoogle Scholar
  17. 17.
    Forbes SC, Walter GA, Rooney WD et al (2013) Skeletal muscles of ambulant children with Duchenne Muscular Dystrophy: validation of multicenter study of evaluation with MR imaging and MR spectroscopy. Radiology 269:198–207CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Fischmann A, Hafner P, Gloor M et al (2013) Quantitative MRI and loss of free ambulation in Duchenne muscular dystrophy. J Neurol 260:969–974CrossRefPubMedGoogle Scholar
  19. 19.
    Finanger EL, Russman B, Forbes SC et al (2012) Use of skeletal muscle MRI in diagnosis and monitoring disease progression in Duchenne muscular dystrophy. Phys Med Rehabil Clin N Am 23:1–10, ixCrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Gaeta M, Messina S, Mileto A et al (2012) Muscle fat-fraction and mapping in Duchenne muscular dystrophy: evaluation of disease distribution and correlation with clinical assessments. Preliminary experience. Skeletal Radiol 41:955–961CrossRefPubMedGoogle Scholar
  21. 21.
    Gaeta M, Scribano E, Mileto A et al (2011) Muscle fat fraction in neuromuscular disorders: dual-echo dual-flip-angle spoiled gradient-recalled MR imaging technique for quantification–a feasibility study. Radiology 259:487–494CrossRefPubMedGoogle Scholar
  22. 22.
    Kim HK, Laor T, Horn PS et al (2010) T2 mapping in Duchenne muscular dystrophy: distribution of disease activity and correlation with clinical assessments. Radiology 255:899–908CrossRefPubMedGoogle Scholar
  23. 23.
    Wren TA, Bluml S, Tseng-Ong L et al (2008) Three-point technique of fat quantification of muscle tissue as a marker of disease progression in Duchenne muscular dystrophy: preliminary study. AJR Am J Roentgenol 190:W8–12CrossRefPubMedGoogle Scholar
  24. 24.
    Hollingsworth KG, Garrood P, Eagle M et al (2013) MR imaging in Duchenne muscular dystrophy: longitudinal assessment of natural history over 18 months. Muscle Nerve 48:586–588CrossRefPubMedGoogle Scholar
  25. 25.
    Kan HE, Scheenen TW, Wohlgemuth M et al (2009) Quantitative MR imaging of individual muscle involvement in facioscapulohumeral muscular dystrophy. Neuromuscul Disord 19:357–362CrossRefPubMedGoogle Scholar
  26. 26.
    Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data analysis - a technical review. NMR Biomed 15:456–467CrossRefPubMedGoogle Scholar
  27. 27.
    Heemskerk AM, Strijkers GJ, Vilanova A et al (2005) Determination of mouse skeletal muscle architecture using three-dimensional diffusion tensor imaging. Magn Reson Med 53:1333–1340CrossRefPubMedGoogle Scholar
  28. 28.
    Zaraiskaya T, Kumbhare D, Noseworthy MD (2006) Diffusion tensor imaging in evaluation of human skeletal muscle injury. J Magn Reson Imaging 24:402–408CrossRefPubMedGoogle Scholar
  29. 29.
    Heemskerk AM, Damon DM (2007) Diffusion tensor MRI assessment of human skeletal muscle architecture. Curr Med Imaging Rev 3:152–160CrossRefGoogle Scholar
  30. 30.
    Zhang J, Zhang G, Morrison B et al (2008) Magnetic resonance imaging of mouse skeletal muscle to measure denervation atrophy. Exp Neurol 212:448–457CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Kendall HO, Kendall FP, Wadsworth GE (1971) Muscles, testing and function. Williams and Wilkins, Baltimore, MDGoogle Scholar
  32. 32.
    Ponrartana S, Andrade K, Wren TA et al (2014) Repeatability of diffusion tensor imaging for the evaluation of lower extremity skeletal muscle. AJR Am J Roentgenol 202:W567–574CrossRefPubMedGoogle Scholar
  33. 33.
    Reeder SB, McKenzie CA, Pineda AR et al (2007) Water-fat separation with IDEAL gradient-echo imaging. J Magn Reson Imaging 25:644–652CrossRefPubMedGoogle Scholar
  34. 34.
    Bley TA, Wieben O, Francois CJ et al (2010) Fat and water magnetic resonance imaging. J Magn Reson Imaging 31:4–18CrossRefPubMedGoogle Scholar
  35. 35.
    Kim HK, Laor T, Horn PS et al (2010) Quantitative assessment of the T2 relaxation time of the gluteus muscles in children with Duchenne muscular dystrophy: a comparative study before and after steroid treatment. Korean J Radiol 11:304–311CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Kermarrec E, Budzik JF, Khalil C et al (2010) In vivo diffusion tensor imaging and tractography of human thigh muscles in healthy subjects. AJR Am J Roentgenol 195:W352–356CrossRefPubMedGoogle Scholar
  37. 37.
    Sinha S, Sinha U, Edgerton VR (2006) In vivo diffusion tensor imaging of the human calf muscle. J Magn Reson Imaging 24:182–190CrossRefPubMedGoogle Scholar
  38. 38.
    Galban CJ, Maderwald S, Uffmann K et al (2005) A diffusion tensor imaging analysis of gender differences in water diffusivity within human skeletal muscle. NMR Biomed 18:489–498CrossRefPubMedGoogle Scholar
  39. 39.
    Budzik JF, Le Thuc V, Demondion X et al (2007) In vivo MR tractography of thigh muscles using diffusion imaging: initial results. Eur Radiol 17:3079–3085CrossRefPubMedGoogle Scholar
  40. 40.
    Qi J, Olsen NJ, Price RR et al (2008) Diffusion-weighted imaging of inflammatory myopathies: polymyositis and dermatomyositis. J Magn Reson Imaging 27:212–217CrossRefPubMedGoogle Scholar
  41. 41.
    Williams SE, Heemskerk AM, Welch EB et al (2013) Quantitative effects of inclusion of fat on muscle diffusion tensor MRI measurements. J Magn Reson Imaging 38:1292–1297CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Skorn Ponrartana
    • 1
    Email author
  • Leigh Ramos-Platt
    • 2
  • Tishya Anne Leong Wren
    • 1
    • 3
  • Houchun Harry Hu
    • 1
  • Thomas Gardner Perkins
    • 4
  • Jonathan Mawlin Chia
    • 4
  • Vicente Gilsanz
    • 1
    • 3
  1. 1.Department of RadiologyChildren’s Hospital Los AngelesLos AngelesUSA
  2. 2.Department of NeurologyChildren’s Hospital Los AngelesLos AngelesUSA
  3. 3.Department of Orthopaedic SurgeryChildren’s Hospital Los AngelesLos AngelesUSA
  4. 4.Philips Healthcare North AmericaClevelandUSA

Personalised recommendations