Pediatric Radiology

, Volume 45, Issue 1, pp 5–19 | Cite as

Advances in cardiac magnetic resonance imaging of congenital heart disease

  • Mieke M. P. Driessen
  • Johannes M. P. J. Breur
  • Ricardo P. J. Budde
  • Joep W. M. van Oorschot
  • Roland R. J. van Kimmenade
  • Gertjan Tj Sieswerda
  • Folkert J. Meijboom
  • Tim LeinerEmail author


Due to advances in cardiac surgery, survival of patients with congenital heart disease has increased considerably during the past decades. Many of these patients require repeated cardiovascular magnetic resonance imaging to assess cardiac anatomy and function. In the past decade, technological advances have enabled faster and more robust cardiovascular magnetic resonance with improved image quality and spatial as well as temporal resolution. This review aims to provide an overview of advances in cardiovascular magnetic resonance hardware and acquisition techniques relevant to both pediatric and adult patients with congenital heart disease and discusses the techniques used to assess function, anatomy, flow and tissue characterization.


Cardiovascular magnetic resonance Technical advances Congenital heart disease Child Magnetic resonance imaging 


Conflicts of interest


Supplementary material

Online supplementary video

Conventional single breath-hold per slice 2-D cine images in a 21-year-old healthy woman oriented from base (top left) to apex (bottom left) in the short axis orientation. Images were acquired using a balanced steady state free precession sequence, scan parameters: TE/TR 1.7/3.4 ms, flip angle 60°, matrix 192x183, voxel size 1.25 × 1.25 mm, slice thickness 8 mm, 30 cardiac phases. (MPG 512 kb)


  1. 1.
    Tennant PW, Pearce MS, Bythell M et al (2010) 20-year survival of children born with congenital anomalies: a population-based study. Lancet 375:649–656PubMedCrossRefGoogle Scholar
  2. 2.
    van der Bom T, Bouma BJ, Meijboom FJ et al (2012) The prevalence of adult congenital heart disease, results from a systematic review and evidence based calculation. Am Heart J 164:568–575PubMedCrossRefGoogle Scholar
  3. 3.
    Wren C, O’Sullivan JJ (2001) Survival with congenital heart disease and need for follow up in adult life. Heart 85:438–443PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Towbin JA, Lowe AM, Colan SD et al (2006) Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA 296:1867–1876PubMedCrossRefGoogle Scholar
  5. 5.
    Nugent AW, Daubeney PE, Chondros P et al (2003) The epidemiology of childhood cardiomyopathy in Australia. N Engl J Med 348:1639–1646PubMedCrossRefGoogle Scholar
  6. 6.
    Lipshultz SE, Lipsitz SR, Sallan SE et al (2005) Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol 23:2629–2636PubMedCrossRefGoogle Scholar
  7. 7.
    Hinton DP, Wald LL, Pitts J et al (2003) Comparison of cardiac MRI on 1.5 and 3.0 Tesla clinical whole body systems. Invest Radiol 38:436–442PubMedGoogle Scholar
  8. 8.
    Dietrich O, Reiser MF, Schoenberg SO (2008) Artifacts in 3-T MRI: physical background and reduction strategies. Eur J Radiol 65:29–35PubMedCrossRefGoogle Scholar
  9. 9.
    Gagliardi MG, Bevilacqua M, Di Renzi P et al (1991) Usefulness of magnetic resonance imaging for diagnosis of acute myocarditis in infants and children, and comparison with endomyocardial biopsy. Am J Cardiol 68:1089–1091PubMedCrossRefGoogle Scholar
  10. 10.
    Abdel-Aty H, Zagrosek A, Schulz-Menger J et al (2004) Delayed enhancement and T2-weighted cardiovascular magnetic resonance imaging differentiate acute from chronic myocardial infarction. Circulation 109:2411–2416PubMedCrossRefGoogle Scholar
  11. 11.
    Cohen MS, Weisskoff RM, Rzedzian RR et al (1990) Sensory stimulation by time-varying magnetic fields. Magn Reson Med 14:409–414PubMedCrossRefGoogle Scholar
  12. 12.
    Budinger TF, Fischer H, Hentschel D et al (1991) Physiological effects of fast oscillating magnetic field gradients. J Comput Assist Tomogr 15:909–914PubMedCrossRefGoogle Scholar
  13. 13.
    Pruessmann KP, Weiger M, Scheidegger MB et al (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962PubMedCrossRefGoogle Scholar
  14. 14.
    Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603PubMedCrossRefGoogle Scholar
  15. 15.
    Leiner T, Habets J, Versluis B et al (2013) Subtractionless first-pass single contrast medium dose peripheral MR angiography using two-point Dixon fat suppression. Eur Radiol 23:2228–2235PubMedCrossRefGoogle Scholar
  16. 16.
    Tsao J, Kozerke S (2012) MRI temporal acceleration techniques. J Magn Reson Imaging 36:543–560PubMedCrossRefGoogle Scholar
  17. 17.
    Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195PubMedCrossRefGoogle Scholar
  18. 18.
    Vasanawala SS, Chan FP, Newman B et al (2011) Combined respiratory and cardiac triggering improves blood pool contrast-enhanced pediatric cardiovascular MRI. Pediatr Radiol 41:1536–1544PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Hsiao A, Lustig M, Alley MT et al (2012) Rapid pediatric cardiac assessment of flow and ventricular volume with compressed sensing parallel imaging volumetric cine phase-contrast MRI. AJR Am J Roentgenol 198:W250–259PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Stuber M, Botnar RM, Danias PG et al (1999) Double-oblique free-breathing high resolution three-dimensional coronary magnetic resonance angiography. J Am Coll Cardiol 34:524–531PubMedCrossRefGoogle Scholar
  21. 21.
    Lai P, Larson AC, Park J et al (2008) Respiratory self-gated four-dimensional coronary MR angiography: a feasibility study. Magn Reson Med 59:1378–1385PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Stehning C, Bornert P, Nehrke K et al (2005) Free-breathing whole-heart coronary MRA with 3D radial SSFP and self-navigated image reconstruction. Magn Reson Med 54:476–480PubMedCrossRefGoogle Scholar
  23. 23.
    Spincemaille P, Nguyen TD, Prince MR et al (2008) Kalman filtering for real-time navigator processing. Magn Reson Med 60:158–168PubMedCrossRefGoogle Scholar
  24. 24.
    van Heeswijk RB, Bonanno G, Coppo S et al (2012) Motion compensation strategies in magnetic resonance imaging. Crit Rev Biomed Eng 40:99–119PubMedCrossRefGoogle Scholar
  25. 25.
    Vignaux OB, Augui J, Coste J et al (2001) Comparison of single-shot fast spin-echo and conventional spin-echo sequences for MR imaging of the heart: initial experience. Radiology 219:545–550PubMedCrossRefGoogle Scholar
  26. 26.
    Karaus A, Merboldt KD, Graessner J et al (2007) Black-blood imaging of the human heart using rapid stimulated echo acquisition mode (STEAM) MRI. J Magn Reson Imaging 26:1666–1671PubMedCrossRefGoogle Scholar
  27. 27.
    Hernandez RJ, Strouse PJ, Londy FJ et al (2001) Gadolinium-enhanced MR angiography (Gd-MRA) of thoracic vasculature in an animal model using double-dose gadolinium and quiet breathing. Pediatr Radiol 31:589–593PubMedCrossRefGoogle Scholar
  28. 28.
    Vogt FM, Theysohn JM, Michna D et al (2013) Contrast-enhanced time-resolved 4D MRA of congenital heart and vessel anomalies: image quality and diagnostic value compared with 3D MRA. Eur Radiol 23:2392–2404PubMedCrossRefGoogle Scholar
  29. 29.
    Young PM, McGee KP, Pieper MS et al (2013) Tips and tricks for MR angiography of pediatric and adult congenital cardiovascular diseases. AJR Am J Roentgenol 200:980–988PubMedCrossRefGoogle Scholar
  30. 30.
    Fenchel M, Saleh R, Dinh H et al (2007) Juvenile and adult congenital heart disease: time-resolved 3D contrast-enhanced MR angiography. Radiology 244:399–410PubMedCrossRefGoogle Scholar
  31. 31.
    Dabir D, Naehle CP, Clauberg R et al (2012) High-resolution motion compensated MRA in patients with congenital heart disease using extracellular contrast agent at 3 Tesla. J Cardiovasc Magn Reson 14:75PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Naehle CP, Kaestner M, Muller A et al (2010) First-pass and steady-state MR angiography of thoracic vasculature in children and adolescents. JACC Cardiovasc Imaging 3:504–513PubMedCrossRefGoogle Scholar
  33. 33.
    Yoon YE, Kitagawa K, Kato S et al (2012) Prognostic value of coronary magnetic resonance angiography for prediction of cardiac events in patients with suspected coronary artery disease. J Am Coll Cardiol 60:2316–2322PubMedCrossRefGoogle Scholar
  34. 34.
    Kato S, Kitagawa K, Ishida N et al (2010) Assessment of coronary artery disease using magnetic resonance coronary angiography: a national multicenter trial. J Am Coll Cardiol 56:983–991PubMedCrossRefGoogle Scholar
  35. 35.
    Greenwood JP, Maredia N, Radjenovic A et al (2009) Clinical evaluation of magnetic resonance imaging in coronary heart disease: the CE-MARC study. Trials 10:62PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Bornert P, Koken P, Nehrke K et al (2013) Water/fat-resolved whole-heart Dixon coronary MRA: An initial comparison. Magn Reson Med 54:476–480Google Scholar
  37. 37.
    Leiner T, Katsimaglis G, Yeh EN et al (2005) Correction for heart rate variability improves coronary magnetic resonance angiography. J Magn Reson Imaging 22:577–582PubMedCrossRefGoogle Scholar
  38. 38.
    Jaroni J, Meier R, Beer A et al (2013) Three-dimensional magnetic resonance imaging using single breath-hold k-t BLAST for assessment of global left ventricular functional parameters. Acad Radiol 20:987–994PubMedCrossRefGoogle Scholar
  39. 39.
    Parish V, Hussain T, Beerbaum P et al (2010) Single breath-hold assessment of ventricular volumes using 32-channel coil technology and an extracellular contrast agent. J Magn Reson Imaging 31:838–844PubMedCrossRefGoogle Scholar
  40. 40.
    Stralen van M, Habets J, Driessen M et al. (2012) Dual breath-hold 3D whole heart cine cardiac MRI: feasibility and initial experience [abstract 3843]. ISMRMGoogle Scholar
  41. 41.
    Makowski MR, Wiethoff AJ, Jansen CH et al (2012) Single breath-hold assessment of cardiac function using an accelerated 3D single breath-hold acquisition technique–comparison of an intravascular and extravascular contrast agent. J Cardiovasc Magn Reson 14:53PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Bellenger NG, Gatehouse PD, Rajappan K et al (2000) Left ventricular quantification in heart failure by cardiovascular MR using prospective respiratory navigator gating: comparison with breath-hold acquisition. J Magn Reson Imaging 11:411–417PubMedCrossRefGoogle Scholar
  43. 43.
    Coelho-Filho OR, Rickers C, Kwong RY et al (2013) MR myocardial perfusion imaging. Radiology 266:701–715PubMedCrossRefGoogle Scholar
  44. 44.
    Ebersberger U, Makowski MR, Schoepf UJ et al (2013) Magnetic resonance myocardial perfusion imaging at 3.0 Tesla for the identification of myocardial ischaemia: comparison with coronary catheter angiography and fractional flow reserve measurements. Eur Heart J Cardiovasc Imaging 14:1174–1180PubMedCrossRefGoogle Scholar
  45. 45.
    Watkins S, McGeoch R, Lyne J et al (2009) Validation of magnetic resonance myocardial perfusion imaging with fractional flow reserve for the detection of significant coronary heart disease. Circulation 120:2207–2213PubMedCrossRefGoogle Scholar
  46. 46.
    Cheng AS, Pegg TJ, Karamitsos TD et al (2007) Cardiovascular magnetic resonance perfusion imaging at 3-tesla for the detection of coronary artery disease: a comparison with 1.5-tesla. J Am Coll Cardiol 49:2440–2449PubMedCrossRefGoogle Scholar
  47. 47.
    Manso B, Castellote A, Dos L et al (2010) Myocardial perfusion magnetic resonance imaging for detecting coronary function anomalies in asymptomatic paediatric patients with a previous arterial switch operation for the transposition of great arteries. Cardiol Young 20:410–417PubMedCrossRefGoogle Scholar
  48. 48.
    Prakash A, Powell AJ, Krishnamurthy R et al (2004) Magnetic resonance imaging evaluation of myocardial perfusion and viability in congenital and acquired pediatric heart disease. Am J Cardiol 93:657–661PubMedCrossRefGoogle Scholar
  49. 49.
    Dulce MC, Mostbeck GH, O’Sullivan M et al (1992) Severity of aortic regurgitation: interstudy reproducibility of measurements with velocity-encoded cine MR imaging. Radiology 185:235–240PubMedCrossRefGoogle Scholar
  50. 50.
    Brenner LD, Caputo GR, Mostbeck G et al (1992) Quantification of left to right atrial shunts with velocity-encoded cine nuclear magnetic resonance imaging. J Am Coll Cardiol 20:1246–1250PubMedCrossRefGoogle Scholar
  51. 51.
    Fujita N, Chazouilleres AF, Hartiala JJ et al (1994) Quantification of mitral regurgitation by velocity-encoded cine nuclear magnetic resonance imaging. J Am Coll Cardiol 23:951–958PubMedCrossRefGoogle Scholar
  52. 52.
    Westenberg JJ, Roes SD, Ajmone Marsan N et al (2008) Mitral valve and tricuspid valve blood flow: accurate quantification with 3D velocity-encoded MR imaging with retrospective valve tracking. Radiology 249:792–800PubMedCrossRefGoogle Scholar
  53. 53.
    Hsiao A, Lustig M, Alley MT et al (2012) Evaluation of valvular insufficiency and shunts with parallel-imaging compressed-sensing 4D phase-contrast MR imaging with stereoscopic 3D velocity-fusion volume-rendered visualization. Radiology 265:87–95PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Kim RJ, Fieno DS, Parrish TB et al (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100:1992–2002PubMedCrossRefGoogle Scholar
  55. 55.
    Kellman P, Arai AE, McVeigh ER et al (2002) Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med 47:372–383PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Kim RJ, Wu E, Rafael A et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453PubMedCrossRefGoogle Scholar
  57. 57.
    Goldfarb JW, Shinnar M (2006) Free-breathing delayed hyperenhanced imaging of the myocardium: a clinical application of real-time navigator echo imaging. J Magn Reson Imaging 24:66–71PubMedCrossRefGoogle Scholar
  58. 58.
    Peters DC, Appelbaum EA, Nezafat R et al (2009) Left ventricular infarct size, peri-infarct zone, and papillary scar measurements: A comparison of high-resolution 3D and conventional 2D late gadolinium enhancement cardiac MR. J Magn Reson Imaging 30:794–800PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Akcakaya M, Rayatzadeh H, Basha TA et al (2012) Accelerated late gadolinium enhancement cardiac MR imaging with isotropic spatial resolution using compressed sensing: initial experience. Radiology 264:691–699PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Keegan J, Jhooti P, Babu-Narayan SV et al (2013) Improved respiratory efficiency of 3D late gadolinium enhancement imaging using the continuously adaptive windowing strategy (CLAWS). Magn Reson Med. doi: 10.1002/mrm.24758 PubMedCentralGoogle Scholar
  61. 61.
    Simonetti OP, Finn JP, White RD et al (1996) “Black blood” T2-weighted inversion-recovery MR imaging of the heart. Radiology 199:49–57PubMedCrossRefGoogle Scholar
  62. 62.
    Abdel-Aty H, Boye P, Zagrosek A et al (2005) Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. J Am Coll Cardiol 45:1815–1822PubMedCrossRefGoogle Scholar
  63. 63.
    Friedrich MG, Sechtem U, Schulz-Menger J et al (2009) Cardiovascular magnetic resonance in myocarditis: A JACC White Paper. J Am Coll Cardiol 53:1475–1487PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Chu GC, Flewitt JA, Mikami Y et al (2013) Assessment of acute myocarditis by cardiovascular MR: diagnostic performance of shortened protocols. Int J Cardiovasc Imaging 29:1077–1083PubMedCrossRefGoogle Scholar
  65. 65.
    Aletras AH, Kellman P, Derbyshire JA et al (2008) ACUT2E TSE-SSFP: a hybrid method for T2-weighted imaging of edema in the heart. Magn Reson Med 59:229–235PubMedCrossRefGoogle Scholar
  66. 66.
    Ferreira VM, Piechnik SK, Dall’Armellina E et al (2012) Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:42PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Dweck MR, Joshi S, Murigu T et al (2011) Midwall fibrosis is an independent predictor of mortality in patients with aortic stenosis. J Am Coll Cardiol 58:1271–1279PubMedCrossRefGoogle Scholar
  68. 68.
    Messroghli DR, Radjenovic A, Kozerke S et al (2004) Modified look-locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 52:141–146PubMedCrossRefGoogle Scholar
  69. 69.
    Fontana M, White SK, Banypersad SM et al (2012) Comparison of T1 mapping techniques for ECV quantification. Histological validation and reproducibility of ShMOLLI versus multibreath-hold T1 quantification equilibrium contrast CMR. J Cardiovasc Magn Reson 14:88PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Flett AS, Hayward MP, Ashworth MT et al (2010) Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation 122:138–144PubMedCrossRefGoogle Scholar
  71. 71.
    White SK, Sado DM, Fontana M et al (2013) T1 mapping for myocardial extracellular volume measurement by CMR: bolus only versus primed infusion technique. JACC Cardiovasc Imaging 6:955–962PubMedCrossRefGoogle Scholar
  72. 72.
    Plymen CM, Sado DM, Taylor AM et al (2013) Diffuse myocardial fibrosis in the systemic right ventricle of patients late after Mustard or Senning surgery: an equilibrium contrast cardiovascular magnetic resonance study. Eur Heart J Cardiovasc Imaging 14:963–968PubMedCrossRefGoogle Scholar
  73. 73.
    Tham EB, Haykowsky MJ, Chow K et al (2013) Diffuse myocardial fibrosis by T1-mapping in children with subclinical anthracycline cardiotoxicity: relationship to exercise capacity, cumulative dose and remodeling. J Cardiovasc Magn Reson 15:48PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Wong TC, Piehler K, Meier CG et al (2012) Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation 126:1206–1216PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Miller CA, Naish JH, Bishop P et al (2013) Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging 6:373–383PubMedCrossRefGoogle Scholar
  76. 76.
    Bull S, White SK, Piechnik SK et al (2013) Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart 99:932–937PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Moon JC, Messroghli DR, Kellman P et al (2013) Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 15:92PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Khan SN, Rapacchi S, Levi DS et al (2013) Pediatric cardiovascular interventional devices: effect on CMR images at 1.5 and 3 Tesla. J Cardiovasc Magn Reson 15:54PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Nordmeyer J, Gaudin R, Tann OR et al (2010) MRI may be sufficient for noninvasive assessment of great vessel stents: an in vitro comparison of MRI, CT, and conventional angiography. AJR Am J Roentgenol 195:865–871PubMedCrossRefGoogle Scholar
  80. 80.
    Andreassi MG (2009) Radiation risk from pediatric cardiac catheterization: friendly fire on children with congenital heart disease. Circulation 120:1847–1849PubMedCrossRefGoogle Scholar
  81. 81.
    Tzifa A, Schaeffter T, Razavi R (2012) MR imaging-guided cardiovascular interventions in young children. Magn Reson Imaging Clin N Am 20:117–128PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mieke M. P. Driessen
    • 1
    • 2
    • 3
  • Johannes M. P. J. Breur
    • 4
  • Ricardo P. J. Budde
    • 1
  • Joep W. M. van Oorschot
    • 1
  • Roland R. J. van Kimmenade
    • 2
  • Gertjan Tj Sieswerda
    • 2
  • Folkert J. Meijboom
    • 2
    • 4
  • Tim Leiner
    • 1
    Email author
  1. 1.Department of RadiologyUniversity of Utrecht, University Medical Center UtrechtUtrechtThe Netherlands
  2. 2.Department of CardiologyUniversity of Utrecht, University Medical Center UtrechtUtrechtThe Netherlands
  3. 3.The Interuniversity Cardiology Institute of the Netherlands (ICIN) – Netherlands Heart InstituteUtrechtThe Netherlands
  4. 4.Department of Pediatric CardiologyWilhelmina Children’s Hospital, University Medical Center UtrechtUtrechtThe Netherlands

Personalised recommendations