Pediatric Radiology

, Volume 44, Issue 2, pp 124–140 | Cite as

High-resolution CT with histopathological correlates of the classic metaphyseal lesion of infant abuse

  • Andy Tsai
  • Anna G. McDonald
  • Andrew E. Rosenberg
  • Rajiv Gupta
  • Paul K. Kleinman
Original Article



The classic metaphyseal lesion (CML) is a common high specificity indicator of infant abuse and its imaging features have been correlated histopathologically in infant fatalities.


High-resolution CT imaging and histologic correlates were employed to (1) characterize the normal infant anatomy surrounding the chondro-osseous junction, and (2) confirm the 3-D model of the CML previously inferred from planar radiography and histopathology.

Materials and methods

Long bone specimens from 5 fatally abused infants, whose skeletal survey showed definite or suspected CMLs, were studied postmortem. After skeletal survey, selected specimens were resected and imaged with high-resolution digital radiography. They were then scanned with micro-CT (isotropic resolution of 45 μm3) or with high-resolution flat-panel CT (isotropic resolutions of 200 μm3). Visualization of the bony structures was carried out using image enhancement, segmentation and isosurface extraction, together with volume rendering and multiplanar reformatting. These findings were then correlated with histopathology.


Study of normal infant bone clarifies the 3-D morphology of the subperiosteal bone collar (SPBC) and the radiographic zone of provisional calcification (ZPC). Studies on specimens with CML confirm that this lesion is a fracture extending in a planar fashion through the metaphysis, separating a mineralized fragment. This disk-like mineralized fragment has two components: (1) a thick peripheral component encompassing the SPBC; and (2) a thin central component comprised predominantly of the radiologic ZPC. By manipulating the 3-D model, the varying appearances of the CML are displayed.


High-resolution CT coupled with histopathology provides elucidation of the morphology of the CML, a strong indicator of infant abuse. This new information may prove useful in assessing the biomechanical factors that produce this strong indicator of abusive assaults in infants.


Child abuse Classic metaphyseal lesion Micro-CT High-resolution flat-panel CT Subperiosteal bone collar Zone of provisional calcification Infant 



The authors would like to thank Nancy Drinan for her help in the preparation of the manuscript.

Conflicts of interest



  1. 1.
    Kleinman P, Marks S, Blackbourne B (1986) The metaphyseal lesion in abused infants: a radiologic histopathologic study. AJR Am J Roentgenol 146:896–905CrossRefGoogle Scholar
  2. 2.
    Boal D (2001) Child abuse roundtable discussion: controversial aspects of child abuse: 43rd Annual Meeting of the Society of Pediatric Radiology. Pediatr Radiol 31:760–774PubMedCrossRefGoogle Scholar
  3. 3.
    Kleinman PK, Perez-Rossello JM, Newton AW et al (2011) Prevalence of the classic metaphyseal lesion in infants at low versus high risk for abuse. AJR Am J Roentgenol 197:1005–1008PubMedCrossRefGoogle Scholar
  4. 4.
    Silverman F (1953) The roentgen manifestations of unrecognized skeletal trauma in infants. AJR Am J Roentgenol 69:413–427Google Scholar
  5. 5.
    Caffey J (1957) Some traumatic lesions in growing bones other than fractures and dislocations: clinical and radiologic features. Br J Radiol 30:225–238PubMedCrossRefGoogle Scholar
  6. 6.
    Kleinman P, Blackbourne B, Marks S et al (1989) Radiologic contributions to the investigation and prosecution of cases of fatal infant abuse. New Engl J Med 320:507–511PubMedCrossRefGoogle Scholar
  7. 7.
    Kleinman P, Marks S, Spevak M et al (1991) Extension of growth-plate cartilage into the metaphysis. AJR Am J Roentgenol 156:775–779PubMedCrossRefGoogle Scholar
  8. 8.
    Osier L, Marks S, Kleinman P (1993) Metaphyseal extensions of hypertrophied chondrocytes in abused infants indicate healing fractures. J Pediatr Orthoped 13:249–254Google Scholar
  9. 9.
    Kleinman P, Marks S (1995) Relationship of the subperiosteal bone collar to metaphyseal lesions in the abused infants. J Bone Joint Surg 77:1471–1476PubMedGoogle Scholar
  10. 10.
    Kleinman P, Marks S, Richmond J et al (1995) Inflicted skeletal injury: a postmortem radiologic-histopathologic study in 31 infants. AJR Am J Roentgenol 165:647–650PubMedCrossRefGoogle Scholar
  11. 11.
    Kleinman P, Marks S (1996) A regional approach to classic metaphyseal lesions in abused infants: the proximal tibia. AJR Am J Roentgenol 166:421–426PubMedCrossRefGoogle Scholar
  12. 12.
    Kleinman P, Marks S (1996) A regional approach to classic metaphyseal lesions in abused infants: the distal tibia. AJR Am J Roentgenol 166:1207–1212PubMedCrossRefGoogle Scholar
  13. 13.
    Kleinman P, Marks S (1996) A regional approach to classic metaphyseal lesions in abused infants: the proximal humerus. AJR Am J Roentgenol 167:1399–1403PubMedCrossRefGoogle Scholar
  14. 14.
    Kleinman P, Marks S (1998) A regional approach to classic metaphyseal lesions in abused infants: the distal femur. AJR Am J Roentgenol 170:43–47PubMedCrossRefGoogle Scholar
  15. 15.
    Gupta R, Grasruck M, Suess C et al (2006) Ultrahigh resolution flat-panel volume CT: fundamental principles, design architecture, and system characterization. Eur Radiol 16:1191–1205PubMedCrossRefGoogle Scholar
  16. 16.
    Bredella M, Misra M, Miller K et al (2008) Distal radius in adolescent girls with anorexia nervosa: trabecular structure analysis with high-resolution flat-panel volume CT. Radiology 249:938–946PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Ranvier L (1873) Quelques faits relatis au developpement du tissue osseux. Comtes Rend Acad Sci 77:1105Google Scholar
  18. 18.
    LaCroix P (1951) Origin of the perichondrial osseous ring. First example of a phenomenon of induction in skeletal development. The Organization of Bones (trans: Gilder S). Blakison, Philadelphia pp 90–97Google Scholar
  19. 19.
    Laval-Jeantet M, Balmain N, Juster M et al (1968) Les rapports de la virole perichondrale et du cartilage en croissance normale et pathologique. Ann Radiol 11:327–335PubMedGoogle Scholar
  20. 20.
    Shapiro F, Holtrop M, Glimcher M (1977) Organization and cellular biology of the perichondrial ossification groove of Ranvier. A morphological study in rabbits. J Bone Joint Surg Am 59:703–723PubMedGoogle Scholar
  21. 21.
    Brighton C (1984) The growth plate. Orthop Clin N Am 15:571–595Google Scholar
  22. 22.
    Burkus J, Ogden J (1984) Development of the distal femoral epiphysis: a microscopic morphological investigation of the zone of Ranvier. J Pediatr Orthop 4:661–668PubMedCrossRefGoogle Scholar
  23. 23.
    Deppermann F, Dallek M, Meenen N et al (1989) The biomechanical significance of the periosteum for the epiphyseal groove. Unfallchirurgie 15:165–173PubMedGoogle Scholar
  24. 24.
    Oestreich A, Ahmad B (1992) The periphysis and its effect on the metaphysis: I. Definition and normal radiographic pattern. Skeletal Radiol 21:283–286PubMedCrossRefGoogle Scholar
  25. 25.
    Braden T (1993) Histophysiology of the growth plate and growth plate injuries. In: Smeak D, Bojrab J, Bloomberg M (eds) Disease mechanism in small animal surgery, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, pp 1027–1041Google Scholar
  26. 26.
    Fazzalari NL, Moore AJ, Byers S et al (1997) Quantitative analysis of trabecular morphogenesis in the human costochondral junction during the postnatal period in normal subjects. Anat Rec 248:1–12PubMedCrossRefGoogle Scholar
  27. 27.
    Xian C, Cool J, Scherer M et al (2007) Cellular mechanisms for methotrexate chemotherapy-induced bone growth defects. Bone 41:842–850PubMedCrossRefGoogle Scholar
  28. 28.
    Jerome C, Hoch B (2012) Skeletal system. In: Treuting P, Dintzis S (eds) Comparative anatomy and histology. Academic, Waltham, pp 53–70Google Scholar
  29. 29.
    Burdan F, Szumilo J, Korobowicz A et al (2009) Morphology and physiology of the epiphyseal growth plate. Folia Histochem Cytobio 47:5–16CrossRefGoogle Scholar
  30. 30.
    Dodds GS, Cameron HC (1934) Studies on experimental rickets in rats. I. Structural modifications of the epiphyseal cartilages in the tibia and other bones. Am J Anat 55:135–165CrossRefGoogle Scholar
  31. 31.
    McLean FC, Bloom W (1940) Calcification and ossification. Calcification in normal growing bone. Anat Rec 78:333–359CrossRefGoogle Scholar
  32. 32.
    Anderson H (1969) Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol 41:59–72PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Ham AW, Cormack DH (1979) Histology, 8th edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  34. 34.
    Maresh M (1955) Linear growth of long bones of extremities from infancy through adolescence. Am J Dis Child 89:725–742Google Scholar
  35. 35.
    Pavlov S, Petrov I (1992) Morphometric characteristics of bones of the extremities in newborn infants. Gegenbaurs Morphol Jahrb 117:145–161Google Scholar
  36. 36.
    Loder R, Bokout C (1991) Fracture patterns in battered children. J Orthop Trauma 5:428–433PubMedCrossRefGoogle Scholar
  37. 37.
    Worlock P, Stower M, Barbor P (1986) Patterns of fractures in accidental and non-accidental injury in children: a comparative study. Br Med J 293:100–102CrossRefGoogle Scholar
  38. 38.
    McLean FC, Urist MR (1961) Bone. An introduction to the physiology of skeletal tissue, 2nd edn. University of Chicago Press, Chicago, p 24Google Scholar
  39. 39.
    Kleinman P, Belanger P, Karellas A et al (1991) Normal metaphyseal radiologic variants not to be confused with findings of infant abuse. AJR Am J Roentgenol 158:781–783CrossRefGoogle Scholar
  40. 40.
    Oestreich A (2003) The acrophysis: a unifying concept for enchondral bone growth and its disorders. I. Normal growth. Skeletal Radiol 32:121–127PubMedCrossRefGoogle Scholar
  41. 41.
    Tsai A, McDonald AG, Rosenberg AE et al (2013) Discordant radiologic and histological dimensions of the zone of provisional calcification in fetal piglets. Pediatr Radiol 43:1606–1614Google Scholar
  42. 42.
    Dodds GS (1932) Osteoclasts and cartilage removal in endochondral ossification of certain mammals. Am J Anat 50:97–127CrossRefGoogle Scholar
  43. 43.
    Park E (1964) The imprinting of nutritional disturbance on the growing bone. Pediatrics 33:815–862PubMedGoogle Scholar
  44. 44.
    Schenk R, Wiener J, Spiro D (1968) Fine structural aspects of vascular invasion of the tibial epiphyseal plate of growing rates. Acta Anat 69:1–17PubMedCrossRefGoogle Scholar
  45. 45.
    Snedecor S, Wilson H (1949) Some obstetrical injuries to the long bones. J Bone Joint Surg 31A:378–384PubMedGoogle Scholar
  46. 46.
    O’Connell A, Donoghue V (2007) Can classic metaphyseal lesions follow uncomplicated caesarean section? Pediatr Radiol 37:488–491PubMedCrossRefGoogle Scholar
  47. 47.
    Offiah A, Emerson N (2011) Validation of a CT based finite element bone model for investigating mechanisms of injury in child abuse. Pediatr Radiol 41:S293CrossRefGoogle Scholar
  48. 48.
    Tsai A, Coats B, Kleinman P (2012) Stress profile of infant rib in the setting of child abuse: a finite element parametric study. J Biomechanics 45:1861–1868CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Andy Tsai
    • 1
  • Anna G. McDonald
    • 2
  • Andrew E. Rosenberg
    • 3
  • Rajiv Gupta
    • 4
  • Paul K. Kleinman
    • 1
  1. 1.Department of RadiologyBoston Children’s HospitalBostonUSA
  2. 2.Office of the Chief Medical ExaminerBostonUSA
  3. 3.Department of PathologyUniversity of Miami HospitalMiamiUSA
  4. 4.Department of RadiologyMassachusetts General HospitalBostonUSA

Personalised recommendations