Pediatric Radiology

, Volume 43, Issue 8, pp 905–919 | Cite as

Accuracy of hepatobiliary scintigraphy for differentiation of neonatal hepatitis from biliary atresia: systematic review and meta-analysis of the literature

  • Hamid Reza Kianifar
  • Shahrzad Tehranian
  • Pardis Shojaei
  • Zohreh Adinehpoor
  • Ramin Sadeghi
  • Vahid Reza Dabbagh Kakhki
  • Alireza S. Keshtgar
Review

Abstract

Hepatobiliary scintigraphy is an important diagnostic modality for work-up of neonatal cholestasis. Therefore, our objective was to evaluate the literature regarding the accuracy of hepatobiliary scintigraphy in differentiating biliary atresia from non-biliary atresia causes of cholestasis (collectively called neonatal hepatitis). Our search included Medline, SCOPUS and Google Scholar. Only studies using Tc-99 m-labeled immunodiacetic acid (IDA) derivatives were included. Overall, 81 studies were included in the meta-analysis. Pooled sensitivity and specificity were 98.7% (range 98.1–99.2%) and 70.4% (range 68.5–72.2%), respectively. Factors that increased specificity included the use of radiotracers with high hepatic extraction, administration of hepatic-inducing drugs (such as phenobarbital), use of a calculated dose/kg and administration of a booster dose in cases of non-excretion of the tracer in the bowel. SPECT imaging and duodenal fluid sampling also had high specificity; however, they need further validation because of the low number of studies. Semiquantitative imaging methods do not seem to have any incremental value. We conclude that hepatobiliary scintigraphy using IDA derivatives can be very useful for diagnostic work-up of neonatal cholestasis. To improve the specificity, several measures can be followed regarding type and dose of the radiotracer and imaging protocols. Non-imaging methods seem to be promising and warrant further validation.

Keywords

Biliary atresia Neonatal hepatitis Hepatobiliary scintigraphy Systematic review Meta-analysis 

References

  1. 1.
    Poddar U, Thapa BR, Das A et al (2009) Neonatal cholestasis: differentiation of biliary atresia from neonatal hepatitis in a developing country. Acta Paediatr 98:1260–1264PubMedCrossRefGoogle Scholar
  2. 2.
    Dolgin SE (2004) Answered and unanswered controversies in the surgical management of extra hepatic biliary atresia. Pediatr Transplant 8:628–631PubMedCrossRefGoogle Scholar
  3. 3.
    Dehghani SM, Haghighat M, Imanieh MH et al (2006) Comparison of different diagnostic methods in infants with cholestasis. World J Gastroenterol 12:5893–5896PubMedGoogle Scholar
  4. 4.
    Sadeghi R, Kianifar HR, Kakhki VR et al (2009) 99mTc sestamibi imaging—can it be a useful substitute for hepatobiliary scintigraphy in infantile jaundice? Nuklearmedizin 48:100–103PubMedGoogle Scholar
  5. 5.
    University of Oxford (2012) Centre for evidence based medicine web site. http://www.cebm.net/index.aspx?o=1025. Accessed 4 January 2013
  6. 6.
    Devillé DL, Buntinx F, Bouter LM et al (2002) Conducting systematic reviews of diagnostic studies: didactic guidelines. BMC Med Res Methodol 2:9PubMedCrossRefGoogle Scholar
  7. 7.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188PubMedCrossRefGoogle Scholar
  8. 8.
    Moses LE, Shapiro D, Littenberg B (1993) Combining independent studies of a diagnostic test into a summary ROC curve: data-analytic approaches and some additional considerations. Stat Med 12:1293–1316PubMedCrossRefGoogle Scholar
  9. 9.
    Walter SD (2002) Properties of the summary receiver operating characteristic (SROC) curve for diagnostic test data. Stat Med 21:1237–1256PubMedCrossRefGoogle Scholar
  10. 10.
    Egger M, Davey Smith G, Schneider M et al (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634PubMedCrossRefGoogle Scholar
  11. 11.
    Duval S, Tweedie R (2000) Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56:455–463PubMedCrossRefGoogle Scholar
  12. 12.
    Zamora J, Abraira V, Muriel A et al (2006) Meta-DiSc: a software for meta-analysis of test accuracy data. BMC Med Res Methodol 6:31PubMedCrossRefGoogle Scholar
  13. 13.
    Cox KL, Stadalnik RC, McGahan JP et al (1987) Hepatobiliary scintigraphy with technetium-99 m disofenin in the evaluation of neonatal cholestasis. J Pediatr Gastroenterol Nutr 6:885–891PubMedCrossRefGoogle Scholar
  14. 14.
    Ben-Haim S, Seabold JE, Kao SC et al (1995) Utility of Tc-99 m mebrofenin scintigraphy in the assessment of infantile jaundice. Clin Nucl Med 20:153–163PubMedCrossRefGoogle Scholar
  15. 15.
    Gerhold JP, Klingensmith WC 3rd, Kuni CC et al (1983) Diagnosis of biliary atresia with radionuclide hepatobiliary imaging. Radiology 146:499–504PubMedGoogle Scholar
  16. 16.
    Rosenthal P, Miller JH, Sinatra FR (1989) Hepatobiliary scintigraphy and the string test in the evaluation of neonatal cholestasis. J Pediatr Gastroenterol Nutr 8:292–296PubMedCrossRefGoogle Scholar
  17. 17.
    Tolia V, Dubois RS, Kagalwalla A et al (1986) Comparison of radionuclear scintigraphy and liver biopsy in the evaluation of neonatal cholestasis. J Pediatr Gastroenterol Nutr 5:30–34PubMedCrossRefGoogle Scholar
  18. 18.
    Tolia V, Kottamasu SR, Tabassum D et al (1999) The use of hepatocyte extraction fraction to evaluate neonatal cholestasis. Clin Nucl Med 24:655–659PubMedCrossRefGoogle Scholar
  19. 19.
    Poddar U, Bhattacharya A, Thapa BR et al (2004) Ursodeoxycholic acid-augmented hepatobiliary scintigraphy in the evaluation of neonatal jaundice. J Nucl Med 45:1488–1492PubMedGoogle Scholar
  20. 20.
    Yachha SK, Khanduri A, Kumar M et al (1996) Neonatal cholestasis syndrome: an appraisal at a tertiary center. Indian Pediatr 33:729–734PubMedGoogle Scholar
  21. 21.
    Meisheri IV, Kasat LS, Kumar A et al (2002) Duodenal intubation and test for bile—a reliable method to rule out biliary atresia. Pediatr Surg Int 18:392–395PubMedCrossRefGoogle Scholar
  22. 22.
    Anand SS, Handa RK, Singh J et al (2006) Hepato-biliary scintigraphy in diagnosis of biliary atresia. Med J Arm Force Ind 61:20–21CrossRefGoogle Scholar
  23. 23.
    Gupta DK, Charles AR, Srinivas M et al (2001) Betamethasone in plus phenobarbitone prior to hepatobiliary scintigraphy increases diagnostic accuracy in infants with jaundice. Indian J Pediatr 68:1039–1041PubMedCrossRefGoogle Scholar
  24. 24.
    Khorasani EN, Mansouri F (2009) Application of ursodeoxycholic acid in hepatobiliary scintigraphy for neonatal hyperbilirubinemia: comparison with phenobarbital. Iran J Nucl Med 17:20–25Google Scholar
  25. 25.
    Rouzrokh M, Sobhiyeh MR, Heibatollahi M (2009) The sensitvity, specificity, positive and negative predictive values of stool color test, triangular cord sign and hepatobiliary scintigraphy in diagnosis of infantile biliary atresia. Iran Red Cres Med J 11:425–430Google Scholar
  26. 26.
    Esmaili J, Izadyar S, Karegar I et al (2007) Biliary atresia in infants with prolonged cholestatic jaundice: diagnostic accuracy of hepatobiliary scintigraphy. Abdom Imaging 32:243–247PubMedCrossRefGoogle Scholar
  27. 27.
    Salvatori M, Valenza V, De Franco A et al (1989) Hepatobiliary scintigraphy in the study of neonatal hepatic cholestasis. Radiol Med 78:638–644PubMedGoogle Scholar
  28. 28.
    Mussa GC, Silvestro L, Barberis L et al (1991) Neonatal hepatic cholestasis with particular regard for the use of radioisotopes in its diagnosis. Minerva Pediatr 43:357–370PubMedGoogle Scholar
  29. 29.
    Stipsanelli K, Koutsikos J, Papantoniou V et al (2007) Hepatobiliary scintigraphy and gamma-GT levels in the differential diagnosis of extrahepatic biliary atresia. Q J Nucl Med Mol Imaging 51:74–81PubMedGoogle Scholar
  30. 30.
    Rossmuller B, Porn U, Schuster T et al (2000) Prognostic value of hepatobiliary functional scintigraphy in diagnosis and after-care of biliary atresia. Rofo 172:73–79PubMedCrossRefGoogle Scholar
  31. 31.
    Peters H, Eissner D, Weitzel D et al (1988) The diagnostic significance of cholescintigraphy and ultrasound examination in cholestatic syndromes in infancy. Pediatri Surg Int 3:37–42Google Scholar
  32. 32.
    Dressler J, Kerremans I, Schweizer P (1988) Efficacy of hepatobiliary scintigraphy in the differential diagnosis of neonatal cholestasis and postoperative follow-up after hepatoporto-digestive anastomosis. Z Kinderchir 43:81–87PubMedGoogle Scholar
  33. 33.
    Wynchank S, Guillet J, Leccia F et al (1984) Biliary atresia and neonatal hepatobiliary scintigraphy. Clin Nucl Med 9:121–124PubMedCrossRefGoogle Scholar
  34. 34.
    Ferretti-Cisneros MC, Fernandes MI, Galvao LC et al (1995) Excretion of 99 m Tc-DISIDA through the bile ducts in the etiological diagnosis of neonatal cholestasis. Arq Gastroenterol 32:85–90PubMedGoogle Scholar
  35. 35.
    Eduardo Chávez C, Barbara Pizarro M, Gladys Guevara P et al (1993) Cholestasis in the first three months of life (in Spanish). Rev Chil Pediatr 64:105–109Google Scholar
  36. 36.
    Yang JG, Li CL, Zou LF (2005) Value of 99mTc-EHIDA hepatobiliary scintingraphy on diagnosis of congential biliary atresia. J Appl Clin Pediatr 20:1050–1051Google Scholar
  37. 37.
    Yang JG, Ma DQ, Li CL (2009) Combined application of hepatobiliary scintigraphy and magnetic resonance cholangiopancreatography in biliary atresia. J Clin Res 26:1639–1645Google Scholar
  38. 38.
    Yang JG, Ma DQ, Peng Y et al (2009) Comparison of different diagnostic methods for differentiating biliary atresia from idiopathic neonatal hepatitis. Clin Imaging 33:439–446PubMedCrossRefGoogle Scholar
  39. 39.
    Wang YP, Feng J, Zhang X et al (2008) 99Tcm-diethyl acetanilido iminodiacetate hepatobiliary imaging in congenital biliary atresia and infantile hepatitis syndrome in the differential diagnosis. Clin Focus 23:48Google Scholar
  40. 40.
    Chen WA, Li CY, Liang H et al (2007) Significance of differential diagnosis of technetium-99 m-2,6-diethylphenylcarbamoyl-methyl-diacetic acid imaging in infants with persistent jaundice. J Appl Clin Pediatr 22:502–503Google Scholar
  41. 41.
    Yue DC, Ling J, Feng JL et al (2010) Hepatobiliary imaging in the diagnosis of prolonged neonatal jaundice: which scanning end point should be chosen? J Diag Imag Interven Radiol 19:177–178Google Scholar
  42. 42.
    Shao GHG, Lu XDL, Han VC (2007) Value of hepatobiliary scintigraphy in infants with congenital biliary atresia and hepatitis syndrome. Chin J Curr Adv Gen Surg 2:81–82Google Scholar
  43. 43.
    Hou XC, Cheng H, Li ZY et al (2008) Clinical value of 99mTc-EHIDA hepatobiliary scintigraphy with phenobarbitol sodium on diagnosis of congenital biliary atresia. Chin J Med Imaging Technol 24:1261–1263Google Scholar
  44. 44.
    Huang ZH, Dong YS, Wu H (2003) Differentiation of infantile persistent jaundice with 99Tcm-EHIDA hepatobiliary scintigraphy. Chin J Med Imaging Technol 19:1166–1167Google Scholar
  45. 45.
    Liu SX, Huang ZH (2010) The value of radionuclide hepatobiliary scintigraphy in combination with determination of bilirubin from duodenal drainage in differential diagnosis of infantile persistent jaundice. Front Med China 4:342–345PubMedCrossRefGoogle Scholar
  46. 46.
    Fischler B, Papadogiannakis N, Nemeth A (2001) Clinical aspects on neonatal cholestasis based on observations at a Swedish tertiary referral centre. Acta Paediatr 90:171–178PubMedCrossRefGoogle Scholar
  47. 47.
    Ang ES, Goh AS, Quak SH et al (1986) Hepatobiliary scintigraphy in the diagnosis of biliary atresia – a Singapore experience. Ann Acad Med Singapore 15:502–506PubMedGoogle Scholar
  48. 48.
    Tan Kendrick AP, Phua KB, Ooi BC et al (2000) Making the diagnosis of biliary atresia using the triangular cord sign and gallbladder length. Pediatr Radiol 30:69–73PubMedCrossRefGoogle Scholar
  49. 49.
    Johnson K, Alton HM, Chapman S (1998) Evaluation of mebrofenin hepatoscintigraphy in neonatal-onset jaundice. Pediatr Radiol 28:937–941PubMedCrossRefGoogle Scholar
  50. 50.
    Manolaki AG, Larcher VF, Mowat AP et al (1983) The prelaparotomy diagnosis of extrahepatic biliary atresia. Arch Dis Child 58:591–594PubMedCrossRefGoogle Scholar
  51. 51.
    El Tumi MA, Clarke MB, Barrett JJ et al (1987) Ten minute radiopharmaceutical test in biliary atresia. Arch Dis Child 62:180–184PubMedCrossRefGoogle Scholar
  52. 52.
    Karim ASMB, Kamal M (2005) Cholestatic jaundice during infancy: experience at a tertiary-care center in Bangladesh. Ind J Gastroenterol 24:52–54Google Scholar
  53. 53.
    Majd M, Reba RC, Altman RP (1981) Effect of phenobarbital on 99mTc-IDA scintigraphy in the evaluation of neonatal jaundice. Semin Nucl Med 11:194–204PubMedGoogle Scholar
  54. 54.
    Sevilla A, Howman-Giles R, Saleh H et al (2007) Hepatobiliary scintigraphy with SPECT in infancy. Clin Nucl Med 32:16–23PubMedCrossRefGoogle Scholar
  55. 55.
    Gilmour SM, Hershkop M, Reifen R et al (1997) Outcome of hepatobiliary scanning in neonatal hepatitis syndrome. J Nucl Med 38:1279–1282PubMedGoogle Scholar
  56. 56.
    Verreault J, Danais S, Blanchard H et al (1987) Hepatobiliary scintigraphy using 99 m Tc-DISIDA and obstructive cholangiopathy in children. Chir Pediatr 28:1–7PubMedGoogle Scholar
  57. 57.
    Donia AE, Ibrahim SM, Kader MS et al (2010) Predictive value of assessment of different modalities in the diagnosis of infantile cholestasis. J Int Med Res 38:2100–2116PubMedCrossRefGoogle Scholar
  58. 58.
    Shimono R, Itoh H, Mogami H et al (1987) Cholescintigraphy in neonatal jaundice using Tc-99 m p-butyl IDA: differential diagnosis of biliary atresia and neonatal hepatitis. Kaku Igaku 24:1025–1030PubMedGoogle Scholar
  59. 59.
    Ohi R, Klingensmith WC 3rd, Lilly JR (1981) Diagnosis of hepatobiliary disease in infants and children with Tc-99 m-diethyl-IDA imaging. Clin Nucl Med 6:297–302PubMedCrossRefGoogle Scholar
  60. 60.
    Ryeom HK, Choe BH, Kim JY et al (2005) Biliary atresia: feasibility of mangafodipir trisodium-enhanced MR cholangiography for evaluation. Radiology 235:250–258PubMedCrossRefGoogle Scholar
  61. 61.
    Kim MJ, Park YN, Han SJ et al (2000) Biliary atresia in neonates and infants: triangular area of high signal intensity in the porta hepatis at T2-weighted MR cholangiography with US and histopathologic correlation. Radiology 215:395–401PubMedGoogle Scholar
  62. 62.
    Lee SY, Kim GC, Choe BH et al (2011) Efficacy of US-guided percutaneous cholecystocholangiography for the early exclusion and type determination of biliary atresia. Radiology 261:916–922PubMedCrossRefGoogle Scholar
  63. 63.
    Park WH, Choi SO, Lee HJ et al (1997) A new diagnostic approach to biliary atresia with emphasis on the ultrasonographic triangular cord sign: comparison of ultrasonography, hepatobiliary scintigraphy, and liver needle biopsy in the evaluation of infantile cholestasis. J Pediatr Surg 32:1555–1559PubMedCrossRefGoogle Scholar
  64. 64.
    Park WH, Choi SO, Lee HJ (1999) The ultrasonographic ‘triangular cord’ coupled with gallbladder images in the diagnostic prediction of biliary atresia from infantile intrahepatic cholestasis. J Pediatr Surg 34:1706–1710PubMedCrossRefGoogle Scholar
  65. 65.
    Choi SO, Park WH, Lee HJ (1998) Ultrasonographic “triangular cord”: the most definitive finding for noninvasive diagnosis of extrahepatic biliary atresia. Eur J Pediatr Surg 8:12–16PubMedCrossRefGoogle Scholar
  66. 66.
    Kirks DR, Coleman RE, Filston HC et al (1984) An imaging approach to persistent neonatal jaundice. AJR Am J Roentgenol 142:461–465PubMedCrossRefGoogle Scholar
  67. 67.
    Spivak W, Sarkar S, Winter D et al (1987) Diagnostic utility of hepatobiliary scintigraphy with 99mTc-DISIDA in neonatal cholestasis. J Pediatr 110:855–861PubMedCrossRefGoogle Scholar
  68. 68.
    Burton EM, Babcock DS, Heubi JE et al (1990) Neonatal jaundice: clinical and ultrasonographic findings. South Med J 83:294–302PubMedCrossRefGoogle Scholar
  69. 69.
    Leonard JC, Hitch DC, Manion CV (1982) The use of diethyl-IDA Tc 99 m clearance curves in the differentiation of biliary atresia from other forms of neonatal jaundice. Radiology 142:773–776PubMedGoogle Scholar
  70. 70.
    Ferry GD, Selby ML, Udall J et al (1985) Guide to early diagnosis of biliary obstruction in infancy. Review of 143 cases. Clin Pediatr (Phila) 24:305–311CrossRefGoogle Scholar
  71. 71.
    Karanes S, Jittivanic U, Chokesuwattanaskul P et al (1986) Diagnostic value of scintigraphy in biliary atresia. J Med Assoc Thai 69:145–147PubMedGoogle Scholar
  72. 72.
    Charearnrad P, Chongsrisawat V, Tepmongkol S et al (2003) The effect of phenobarbital on the accuracy of technetium-99 m diisopropyl iminodiacetic acid hepatobiliary scintigraphy in differentiating biliary atresia from neonatal hepatitis syndrome. J Med Assoc Thai 86:189–194Google Scholar
  73. 73.
    Wongsawasdi L, Khatiyapong V, Singhavejsakul J et al (2003) Infantile cholestasis syndrome at Chiang Mai Hospital from 1994–1998. Chiang Mai Med Bull 42:17–23Google Scholar
  74. 74.
    Wongsawasdi L, Ukarapol N, Visrutaratna P et al (2008) Diagnostic evaluation of infantile cholestasis. J Med Assoc Thai 91:345–349PubMedGoogle Scholar
  75. 75.
    Kuloglu Z, Odek C, Kırsaclıoglu CT et al (2008) Evaluation of 50 patients with neonatal cholestasis. J Pediatr Health Dis 51:140–146Google Scholar
  76. 76.
    Jaw TS, Wu CC, Ho YH et al (1984) Diagnosis of obstructive jaundice in infants: Tc-99 m DISIDA in duodenal juice. J Nucl Med 25:360–363PubMedGoogle Scholar
  77. 77.
    Jaw TS, Kuo YT, Liu GC et al (1999) MR cholangiography in the evaluation of neonatal cholestasis. Radiology 212:249–256PubMedGoogle Scholar
  78. 78.
    Huang FC, Hwang KP (2006) Differential diagnosis of infantile choledochal cyst with or without biliary atresia. Acta Paediatr Taiwan 47:175–180PubMedGoogle Scholar
  79. 79.
    Lee CH, Wang PW, Lee TT et al (2000) The significance of functioning gallbladder visualization on hepatobiliary scintigraphy in infants with persistent jaundice. J Nucl Med 41:1209–1213PubMedGoogle Scholar
  80. 80.
    Lin WY, Lin CC, Changlai SP et al (1997) Comparison technetium of Tc-99 m disofenin cholescintigraphy with ultrasonography in the differentiation of biliary atresia from other forms of neonatal jaundice. Pediatr Surg Int 12:30–33PubMedCrossRefGoogle Scholar
  81. 81.
    Hung WT, Su CT (1990) Diagnosis of atretic prolonged obstructive jaundice; technetium 99 m hepatolite excretion study. J Pediatr Surg 25:797–800PubMedCrossRefGoogle Scholar
  82. 82.
    Portnoy O, Granot E, Katz S (1994) Neonatal hepatitis and biliary atresia. Harefuah 126:491Google Scholar
  83. 83.
    Guiscafre H, Dumois R, Trevino J et al (1983) Hepatobiliary scintigammagraphy in the differential diagnosis between neonatal hepatitis and bile duct atresia. Bol Med Hosp Infant Mex 40:677–684PubMedGoogle Scholar
  84. 84.
    Rivera-Echegoyen M, Ramirez-Mayans JA, Casaubon-Garcin P et al (1988) Neonatal cholestatic syndrome: use of phenobarbital in the gammagram of the bile ducts. Bol Med Hosp Infant Mex 45:645–652PubMedGoogle Scholar
  85. 85.
    Rendon-Macias ME, Villasis-Keever MA, Castaneda-Mucino G et al (2008) Improvement in accuracy of gamma-glutamyl transferase for differential diagnosis of biliary atresia by correlation with age. Turk J Pediatr 50:253–259PubMedGoogle Scholar
  86. 86.
    Liberek A, Gora-Gebka M, Bako W et al (2006) Congenital extrahepatic biliary atresia as a cause of cholestasis in newborns and infants. Med Wieku Rozwoj 10:395–406PubMedGoogle Scholar
  87. 87.
    Kaminska A, Pawlowska J, Jankowska I et al (2001) Hepatobiliary scanning in the diagnosis of biliary atresia. Med Sci Monit 7:110–113PubMedGoogle Scholar
  88. 88.
    Stepanov EA, Krasovskaia TV, Smirnov AN et al (1989) Diagnostic and therapeutic tactics in various forms of cholangiopathies in children (in Russian). Khirurgiia (Mosk) 11:50–54Google Scholar
  89. 89.
    El-Desouki M, Mohamadiyah M, Al Rabeeah A et al (1998) Hepatobiliary scintigraphy in the distinction between biliary hypoplasia and biliary atresia. Saudi J Gastroenterol 4:8–12PubMedGoogle Scholar
  90. 90.
    Ma H, Chen XH, Hu JG et al (2010) Clinical value of Tc-EHIDA hepatobiliary scintigraphy with testing feces radioactivity in the diagnosis of congenital biliary atresia. J Chin Clin Med Imaging 21:112–113Google Scholar
  91. 91.
    Xiao Y, Su M, Yang J et al (2002) Evaluation of 99mTc-EHIDA hepatobiliary scintigraphy and abdominal ultrasonography in diagnosis of extrahepatic biliary atresia. J Chin Mat Class 12:88–91Google Scholar
  92. 92.
    Tolia V, Kuhns L, Dubois RS (1989) Role of 99mTc-disofenin in duodenal and gastric aspirates in the evaluation of persistent neonatal cholestasis. J Pediatr Gastroenterol Nutr 9:426–430PubMedCrossRefGoogle Scholar
  93. 93.
    Lai MW, Chang MH, Hsu SC et al (1994) Differential diagnosis of extrahepatic biliary atresia from neonatal hepatitis: a prospective study. J Pediatr Gastroenterol Nutr 18:121–127PubMedCrossRefGoogle Scholar
  94. 94.
    Chervu LR, Nunn AD, Loberg MD (1982) Radiopharmaceuticals for hepatobiliary imaging. Semin Nucl Med 12:5–17PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hamid Reza Kianifar
    • 1
  • Shahrzad Tehranian
    • 2
  • Pardis Shojaei
    • 2
  • Zohreh Adinehpoor
    • 2
  • Ramin Sadeghi
    • 2
  • Vahid Reza Dabbagh Kakhki
    • 2
  • Alireza S. Keshtgar
    • 3
  1. 1.Paediatric Gastroenterology WardMashhad University of Medical Sciences, Ghaem HospitalMashhadIran
  2. 2.Nuclear Medicine Research CenterMashhad University of Medical SciencesMashhadIran
  3. 3.Evelina Children’s HospitalGuy’s and St. Thomas’ NHS Foundation TrustLondonUK

Personalised recommendations