Pediatric Radiology

, Volume 43, Supplement 1, pp 61–70

Radiologic analysis of femoral acetabular impingement: from radiography to MRI

  • Jerry R. Dwek
  • Shafagh Monazzam
  • Christine B. Chung
Pediatric Musculoskeletal Imaging: Beyond the Basics


Femoral acetabular impingement is a set of morphologic abnormalities that are considered to be a major cause of degenerative disease in the hip joint. Early changes are already present in adolescence when it is the pediatric radiologist who must assess current damage with the aim of averting progression to more severe and debilitating osteoarthritis. A multimodality approach is used for diagnosis, that includes conventional radiography and CT to assess the osseous structures. MR arthrography is the primary advanced imaging modality for assessment of morphologic changes as well as injuries of the labrum and articular cartilage. Details of radiologic imaging are offered to guide the radiologist and provide an avenue for the accurate description of the osseous and articular alterations and injury.


Hip Femoral acetabular impingement MR arthrography Children 


  1. 1.
    Ganz R, Parvizi J, Beck M et al (2003) Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res 417:112–120PubMedGoogle Scholar
  2. 2.
    Siebenrock KA, Kalbermatten DF, Ganz R (2003) Effect of pelvic tilt on acetabular retroversion: a study of pelves from cadavers. Clin Orthop Relat Res 407:241–248PubMedCrossRefGoogle Scholar
  3. 3.
    Tannast M, Siebenrock KA, Anderson SE (2007) Femoroacetabular impingement: radiographic diagnosis – what the radiologist should know. AJR Am J Roentgenol 188:1540–1552PubMedCrossRefGoogle Scholar
  4. 4.
    Murphy SB, Ganz R, Muller ME (1995) The prognosis in untreated dysplasia of the hip. A study of radiographic factors that predict the outcome. J Bone Joint Surg Am 77:985–989PubMedGoogle Scholar
  5. 5.
    Tonnis D, Heinecke A (1999) Acetabular and femoral anteversion: relationship with osteoarthritis of the hip. J Bone Joint Surg Am 81:1747–1770PubMedGoogle Scholar
  6. 6.
    Meyer DC, Beck M, Ellis T et al (2006) Comparison of six radiographic projections to assess femoral head/neck asphericity. Clin Orthop Relat Res 445:181–185PubMedGoogle Scholar
  7. 7.
    Barton C, Salineros MJ, Rakhra KS et al (2011) Validity of the alpha angle measurement on plain radiographs in the evaluation of cam-type femoroacetabular impingement. Clin Orthop Relat Res 469:464–469PubMedCrossRefGoogle Scholar
  8. 8.
    Pitt MJ, Graham AR, Shipman JH et al (1982) Herniation pit of the femoral neck. AJR Am J Roentgenol 138:1115–1121PubMedCrossRefGoogle Scholar
  9. 9.
    Leunig M, Beck M, Kalhor M et al (2005) Fibrocystic changes at anterosuperior femoral neck: prevalence in hips with femoroacetabular impingement. Radiology 236:237–246PubMedCrossRefGoogle Scholar
  10. 10.
    Sutter R, Dietrich TJ, Zingg PO et al (2012) How useful is the alpha angle for discriminating between symptomatic patients with cam-type femoroacetabular impingement and asymptomatic volunteers? Radiology 264:514–521PubMedCrossRefGoogle Scholar
  11. 11.
    Pollard TC, Villar RN, Norton MR et al (2010) Femoroacetabular impingement and classification of the cam deformity: the reference interval in normal hips. Acta Orthop 81:134–141PubMedCrossRefGoogle Scholar
  12. 12.
    Studler U, Kalberer F, Leunig M et al (2008) MR arthrography of the hip: differentiation between an anterior sublabral recess as a normal variant and a labral tear. Radiology 249:947–954PubMedCrossRefGoogle Scholar
  13. 13.
    Saddik D, Troupis J, Tirman P et al (2006) Prevalence and location of acetabular sublabral sulci at hip arthroscopy with retrospective MRI review. AJR Am J Roentgenol 187:W507–W511PubMedCrossRefGoogle Scholar
  14. 14.
    Pfirrmann CW, Duc SR, Zanetti M et al (2008) MR arthrography of acetabular cartilage delamination in femoroacetabular cam impingement. Radiology 249:236–241PubMedCrossRefGoogle Scholar
  15. 15.
    Crema MD, Roemer FW, Marra MD et al (2011) Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 31:37–61PubMedCrossRefGoogle Scholar
  16. 16.
    Bashir A, Gray ML, Hartke J et al (1999) Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med 41:857–865PubMedCrossRefGoogle Scholar
  17. 17.
    Dardzinski BJ, Mosher TJ, Li S et al (1997) Spatial variation of T2 in human articular cartilage. Radiology 205:546–550PubMedGoogle Scholar
  18. 18.
    Regatte RR, Akella SV, Lonner JH et al (2006) T1rho relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1rho with T2. J Magn Reson Imaging 23:547–553PubMedCrossRefGoogle Scholar
  19. 19.
    Bae WC, Dwek JR, Znamirowski R et al (2010) Ultrashort echo time MR imaging of osteochondral junction of the knee at 3T: identification of anatomic structures contributing to signal intensity. Radiology 254:837–845PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jerry R. Dwek
    • 1
    • 2
  • Shafagh Monazzam
    • 3
  • Christine B. Chung
    • 4
  1. 1.Department of Radiology, Rady Children’s Hospital and Health CenterUniversity of California at San DiegoSan DiegoUSA
  2. 2.San Diego ImagingSan DiegoUSA
  3. 3.Department of OrthopedicsRady Children’s Hospital and Health CenterSan DiegoUSA
  4. 4.Department of RadiologyUniversity of California at San DiegoSan DiegoUSA

Personalised recommendations