Pediatric Radiology

, Volume 43, Issue 4, pp 406–417 | Cite as

FDG PET/CT in children and adolescents with lymphoma

  • Regine KlugeEmail author
  • Lars Kurch
  • Françoise Montravers
  • Christine Mauz-Körholz


The aim of this review is to give an overview of FDG PET/CT applications in children and adolescents with lymphoma. Today, FDG PET is used for tailoring treatment intensity in children with Hodgkin lymphoma within the framework of international treatment optimisation protocols. In contrast, the role of this method in children with Non-Hodgkin lymphoma is not well defined. This paper overviews clinical appearance and metabolic behaviour of the most frequent lymphoma subtypes in childhood. The main focus of the review is to summarise knowledge about the role of FDG PET/CT for initial staging and early response assessment.


FDG PET Hodgkin lymphoma Non-Hodgkin lymphoma 


  1. 1.
    Kaatsch P (2010) Epidemiology of childhood cancer. Cancer Treat Rev 36:277–285PubMedCrossRefGoogle Scholar
  2. 2.
    Harris NL, Jaffe ES, Stein H et al (1994) A revised European-American classification of lymphoid neoplasm: a proposal from the International Lymphoma Study Group. Blood 84:1361–1392PubMedGoogle Scholar
  3. 3.
    Hansmann ML, Willenbrock K (2002) Die WHO-Klassifikation des Hodgkin-Lymphoms und ihre molekulargenetische Relevanz. Der Pathologe 29:1393–1398Google Scholar
  4. 4.
    Klapper W, Oschlies I (2012) Specifics of histopathological and genetical diagnosis and classification of lymphomas in children and adolescents. Klin Pädiatr 224:183–190PubMedCrossRefGoogle Scholar
  5. 5.
    Sandoval C, Venkateswaran L, Billups C et al (2002) Lymphocyte-predominant Hodgkin disease in children. J Pediatr Hematol Oncol 24:269–273PubMedCrossRefGoogle Scholar
  6. 6.
    Pellegrino B, Terrier-Lacombe MJ, Oberlin O et al (2003) Lymphocyte-predominant Hodgkin’s lymphoma in children: therapeutic abstention after initial lymph node resection—a study of the French Society of Pediatric Oncology. J Clin Oncol 21:2948–2952PubMedCrossRefGoogle Scholar
  7. 7.
    Hall GW, Katzilakis N, Pinkerton CR et al (2007) Outcome of children with nodular lymphocyte predominant Hodgkin lymphoma—a Children’s Cancer and Leukaemia Group report. Br J Haematol 138:761–768PubMedCrossRefGoogle Scholar
  8. 8.
    Mauz-Körholz C, Gorde-Grosjean S, Hasenclever D et al (2007) Resection alone in 58 children with limited stage lymphocyte-predominant Hodgkin lymphoma—experience from the European Network Group on Pediatric Hodgkin Lymphoma. Cancer 110:179–185PubMedCrossRefGoogle Scholar
  9. 9.
    Mauz-Körholz C, Hasenclever D, Dörffel W et al (2010) Procarbazine-free OEPA-COPDAC chemotherapy in boys and standard OPPA-COPP in girls have comparable effectiveness in pediatric Hodgkin’s lymphoma: the GPOH-HD-2002 study. J Clin Oncol 28:3680–3686PubMedCrossRefGoogle Scholar
  10. 10.
    Bhatia S, Yasui Y, Robison LL et al (2003) High risk of subsequent neoplasm continues with extended follow-up of childhood Hodgkin’s disease: report from the Late Effects Study Group. J Clin Oncol 21:4386–4394PubMedCrossRefGoogle Scholar
  11. 11.
    Prasad PK, Signorello LB, Friedman DL et al (2012) Long-term non-cancer mortality in pediatric and young adult cancer survivors in Finland. Pediatr Blood Cancer 58:421–427PubMedCrossRefGoogle Scholar
  12. 12.
    Hancock SL, Donaldson SS, Hoppe RT (1993) Cardiac Disease following treatment of Hodkgin’s disease in children and adolescents. J Clin Oncol 11:1208–1215PubMedGoogle Scholar
  13. 13.
    Illes A, Biro E, Miltenyi Z et al (2003) Hypothyroidism and thyroiditis after therapy for Hodgkin’s disease. Acta Haematol 109:11–17PubMedCrossRefGoogle Scholar
  14. 14.
    Körholz D, Claviez A, Hasenclever D et al (2004) The concept of the GPOH-HD-2003 therapy study for pediatric Hodgkin’s disease: evolution in the tradition of the DAL/GPOH Studies. Klin Pädiatr 216:150–156PubMedCrossRefGoogle Scholar
  15. 15.
    Schellong G (1996) Treatment of children and adolescents with Hodgkin’s disease: the experience of the German-Austrian Paediatric Study Group. Baillieres Clin Haematol 9:619–634PubMedCrossRefGoogle Scholar
  16. 16.
    Dörffel W, Lüders H, Rühl U et al (2003) Preliminary results of multicenter trial GPOH-HD-95 for the treatment of Hodgkin’s disease in children and adolescents: analysis and outlook. Klin Pädiatr 215:139–145PubMedCrossRefGoogle Scholar
  17. 17.
    Reiter A, Schrappe M, Ludwig WD et al (2000) Intensive ALL-type therapy without local radiotherapy provides a 90% event-free survival for children with T-cell lymphoblastic lymphoma: a BFM group report. Blood 95:416–421PubMedGoogle Scholar
  18. 18.
    Wossmann W, Seidemann K, Mann G et al (2005) The impact of the methotrexate administration schedule and dose in the treatment of children and adolescents with B-cell neoplasm: a report of the BFM Group Study NHL-BFM95. Blood 105:948–958CrossRefGoogle Scholar
  19. 19.
    Brugieres L, Minard V, Patte C et al (2012) Lymphoma in children and adolescents. Rev Prat 62:453–458PubMedGoogle Scholar
  20. 20.
    Reiter A, Ferrando AA (2009) Malignant lymphomas and lymphadenopathies. In: Orkin SH et al (eds) Oncology of infancy and childhood. Saunders, Philadelphia, pp 417–505CrossRefGoogle Scholar
  21. 21.
    Iversen OH, Iversen U, Ziegler JL et al (1974) Cell kinetics in Burkitt lymphoma. Eur J Cancer 10:155–163PubMedGoogle Scholar
  22. 22.
    Molyneux EM, Rochford R, Griffin B et al (2012) Burkitt’s lymphoma. Lancet 379:1234–1244PubMedCrossRefGoogle Scholar
  23. 23.
    Hummel M, Bentink S, Berger H et al (2006) A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N Engl J Med 354:2419–2430PubMedCrossRefGoogle Scholar
  24. 24.
    Abramson SJ, Price AC (2008) Imaging of pediatric lymphomas. Radiol Clin North Am 46:313–338PubMedCrossRefGoogle Scholar
  25. 25.
    Cairo MS, Raetz E, Lim MS et al (2005) Childhood and adolescent non-Hodgkin lymphoma: new insights in biology and critical challenges for the future. Pediatr Blood Cancer 45:753–769PubMedCrossRefGoogle Scholar
  26. 26.
    Pinkerton R (2005) Continuing challenges in childhood non-Hodgkin’s. Br J Haematol 130:480–488PubMedCrossRefGoogle Scholar
  27. 27.
    Tsukamoto N, Kojima M, Hasegawa M et al (2007) The usefulness of 18F-fluorodeoxyglucose positron emission tomography 18F-FDG-PET and a comparison of 18F-FDG-PET with 67 gallium scintigraphy in the evaluation of lymphoma: relation to histologic subtypes based on the World Health Organization classification. Cancer 110:652–659PubMedCrossRefGoogle Scholar
  28. 28.
    Elstrom R, Guan L, Baker G et al (2003) Utility of FDG-PET scanning in lymphoma by WHO classification. Blood 101:3875–3876PubMedCrossRefGoogle Scholar
  29. 29.
    Rigacci L, Vitolo U, Nassi L et al (2007) Positron emission tomography in the staging of patients with Hodgkin’s lymphoma. A prospective multicentric study by the Intergruppo Italiano Linfomi. Ann Hematol 86:897–903PubMedCrossRefGoogle Scholar
  30. 30.
    Weiler-Sagie M, Bushelev O, Epelbaum R et al (2010) (18)F-FDG avidity in lymphoma readdressed: a study of 766 patients. J Nucl Med 51:25–30PubMedCrossRefGoogle Scholar
  31. 31.
    Jerusalem G, Beguin Y, Fassotte MF et al (2001) Whole-body positron emission tomography using 18F-fluorodeoxyglucose compared to standard procedure for staging patients with Hodgkin’s disease. Haematologica 86:266–273PubMedGoogle Scholar
  32. 32.
    Hutchings M, Loft A, Hansen M et al (2006) Different histopathological subtypes of Hodgkin lymphoma show significantly different levels of FDG uptake. Hematol Oncol 24:146–150PubMedCrossRefGoogle Scholar
  33. 33.
    Kabickova E, Sumerauer D, Cumlivska E et al (2006) Comparison of 18F-FDG-PET and standard procedures for the pretreatment staging of children and adolescents with Hodgkin’s disease. Eur J Nucl Med Mol Imaging 33:1025–1031PubMedCrossRefGoogle Scholar
  34. 34.
    London K, Cross S, Onikul E et al (2011) 18F-FDG PET/CT in paediatric lymphoma: comparison with conventional imaging. Eur J Nucl Med Mol Imaging 38:274–284PubMedCrossRefGoogle Scholar
  35. 35.
    Hutchings M, Loft A, Hansen M et al (2006) Positron emission tomography with and without computed tomography in the primary staging of Hodgkin’s lymphoma. Haematologica 91:482–489PubMedGoogle Scholar
  36. 36.
    Rini JN, Leonidas JC, Tomas MB et al (2003) 18F-FDG PET versus CT for evaluating the spleen during initial staging of lymphoma. J Nucl Med 44:1072–1074PubMedGoogle Scholar
  37. 37.
    Pelosi E, Penna D, Deandreis D et al (2008) FDG-PET in the detection of bone marrow disease in Hodgkin’s disease and aggressive non-Hodgkin’s lymphoma and its impact on clinical management. Q J Nucl Med Mol Imaging 52:9–16PubMedGoogle Scholar
  38. 38.
    Moulin-Romsee, Hindie E, Cuenca X et al (2010) 18F-FDG PET/CT bone/bone marrow findings in Hodgkin’s lymphoma may circumvent the use of bone marrow trephine biopsy at diagnosis staging. Eur J Nucl Med Mol Imaging 37:1095–1105PubMedCrossRefGoogle Scholar
  39. 39.
    Chen G, Chen W, Chamroonrat W et al (2011) Biopsy versus FDG PET/CT in the initial evaluation of bone marrow involvement in pediatric lymphoma patient. Eur J Nucl Med Mol Imaging 38:1469–1476PubMedCrossRefGoogle Scholar
  40. 40.
    Purz S, Mauz-Körholz C, Körholz D et al (2011) [18F] fluorodeoxyglucose positron emission tomography for detection of bone marrow involvement in children and adolescents with Hodgkin’s lymphoma. J Clin Oncol 29:3523–3528PubMedCrossRefGoogle Scholar
  41. 41.
    Weihrauch MR, Bischoff RD, Dietlein M et al (2002) Whole-body positron emission tomography using 18F-fluorodeoxyglucose for initial staging of patients with Hodgkin’s disease. Ann Hematol 81:20–25PubMedCrossRefGoogle Scholar
  42. 42.
    Montravers F, McNamara D, Landman-Parker J et al (2002) [18F]FDG in childhood lymphoma: clinical utility and impact on management. Eur J Nucl Med 29:1155–1165CrossRefGoogle Scholar
  43. 43.
    Hermann S, Wormanns D, Pixberg M et al (2005) Staging in childhood lymphoma: differences between FDG-PET and CT. Nuklearmedizin 44:1–7PubMedGoogle Scholar
  44. 44.
    Depas G, De Barsy C, Jerusalem G et al (2005) 18F-FDG-PET in children with lymphomas. Eur J Nucl Med Mol Imaging 32:31–38PubMedCrossRefGoogle Scholar
  45. 45.
    Munker R, Glass J, Griffeth LK et al (2004) Contribution of PET imaging to the initial staging and prognosis of patients with Hodgkin’s disease. Ann Oncol 15:1699–1704PubMedCrossRefGoogle Scholar
  46. 46.
    Cheson BD (2011) Role of functional imaging in the management of lymphoma. J Clin Oncol 29:1844–1854PubMedCrossRefGoogle Scholar
  47. 47.
    Girinsky T, Ghalibafian M, Bonniaud G et al (2007) Is FDG-PET scan in patients with early stage Hodgkin lymphoma of any value in the implementation of the involved-node radiotherapy concept and dose painting? Radiother Oncol 85:178–186PubMedCrossRefGoogle Scholar
  48. 48.
    Quarles van Ufford H, Hoekstra O, de Haas M et al (2010) On the added value of baseline FDG-PET in malignant lymphoma. Mol Imaging Biol 12:225–232PubMedCrossRefGoogle Scholar
  49. 49.
    Muslimani AA, Faraq HL, Francis S et al (2008) The utility of 18-F-fluorodeoxyglucose positron emission tomography in evaluation of bone marrow involvement by non-Hodgkin lymphoma. Am J Clin Oncol 31:409–412PubMedCrossRefGoogle Scholar
  50. 50.
    Montravers F, Landman-Parker J, Kerrou K et al (2006) Impact of FDG PET on the management of childhood non-Hodgkin lymphoma: a five-year experience. J Nucl Med 47:87PGoogle Scholar
  51. 51.
    Toma P, Granata C, Rossi A et al (2007) Multimodality imaging of Hodgkin disease and non-Hodgkin lymphomas in children. Radiographics 27:1335–1354PubMedCrossRefGoogle Scholar
  52. 52.
    Okada M, Sato N, Ishii K et al (2010) FDG-PET/CT versus CT, MR imaging, and 67 Ga scintigraphy in the posttherapy evaluation of malignant lymphoma. Radiographics 30:939–957PubMedCrossRefGoogle Scholar
  53. 53.
    Moog F, Bangerter M, Diederichs CG et al (1998) Extranodal malignant lymphoma: detection with FDG PET versus CT. Radiology 206:475–481PubMedGoogle Scholar
  54. 54.
    Cahu X, Bodet-Milin C, Brissot E et al (2010) 18F-fluorodeoxyglucose-positron emission tomography before, during and after treatment in mature T/NK lymphomas: a study from the GOELAMS group. Ann Oncol 22:705–711PubMedCrossRefGoogle Scholar
  55. 55.
    Karantanis D, Durski JM, Lowe VJ et al (2010) 18F-FDG and PET/CT in Burkitt’s lymphoma. Eur J Radiol 75:68–73CrossRefGoogle Scholar
  56. 56.
    Yamane T, Daimaru O, Satoshi I et al (2004) Decreased 18F-FDG uptake 1 day after initiation of chemotherapy for malignant lymphomas. J Nucl Med 45:1838–1842PubMedGoogle Scholar
  57. 57.
    Aldinucci D, Gloghini A, Pinto A et al (2010) The classical Hodgkin’s lymphoma microenvironment and its role in promoting tumour growth and immune escape. J Pathol 221:248–263PubMedCrossRefGoogle Scholar
  58. 58.
    Meignan M (2010) Interim PET in lymphoma: step towards standardization. Eur J Nucl Med Mol Imaging 37:1821–1823PubMedCrossRefGoogle Scholar
  59. 59.
    Gallamini A, Fiore A, Sorasio R et al (2009) Interim positron emission tomography scan in Hodgkin lymphoma: definitions, interpretation rules, and clinical validation. Leuk Lymphoma 50:1761–1764PubMedCrossRefGoogle Scholar
  60. 60.
    Furth C, Steffen IG, Amthauer H et al (2009) Early and late therapy response assessment with [18F]fluorodeoxyglucose positron emission tomography in pediatric Hodgkin’s lymphoma: analysis of a prospective multicenter trial. J Clin Oncol 27:4385–4391PubMedCrossRefGoogle Scholar
  61. 61.
    Kostakoglu L, Coleman M, Leonard JP et al (2002) PET predicts prognosis after 1cycle of chemotherapy in aggressive lymphoma and Hodgkin’s disease. J Nucl Med 43:1018–1027PubMedGoogle Scholar
  62. 62.
    Hutchings M, Loft A, Hansen M et al (2006) FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood 107:52–59PubMedCrossRefGoogle Scholar
  63. 63.
    Gallamini A, Hutchings M, Rigacci L et al (2007) Early interim 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography in prognostically superior to international prognostic score in advanced-stage Hodgkin’s lymphoma: a report from a joint Italian-Danish study. J Clin Oncol 25:3746–3752PubMedCrossRefGoogle Scholar
  64. 64.
    Kluge R, Körholz D (2011) Role of FDG-PET in staging and therapy of children with Hodgkin lymphoma. Klin Pädiatr 223:315–319PubMedCrossRefGoogle Scholar
  65. 65.
    Juweid ME, Stroobants S, Hoekstra OS et al (2007) Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol 25:571–578PubMedCrossRefGoogle Scholar
  66. 66.
    Körholz D, Kluge R, Wickmann L et al (2003) Importance of F18-fluorodeoxy-D-2-glucose positron emission tomography (FDG-PET) for staging and therapy control of Hodgkin’s lymphoma in childhood and adolescence—consequences for the GPOH-HD 2003 protocol. Onkologie 26:489–493PubMedCrossRefGoogle Scholar
  67. 67.
    Gallamini A, Patti C, Viviani S et al (2011) Early chemotherapy intensification with BEACOPP in advanced-stage Hodgkin lymphoma patients with an interim-PET positive after two ABVD courses. Br J Haematol 152:551–560PubMedCrossRefGoogle Scholar
  68. 68.
    Meignan M, Gallamini A, Haioun C (2009) Report on the First International Workshop on Interim-PET-Scan in Lymphoma. Leuk Lymphoma 50:1257–1260PubMedCrossRefGoogle Scholar
  69. 69.
    Barrington SF, Qian W, Somer EJ et al (2010) Concordance between four European centres of PET reporting criteria designed for use in multicentric trials in Hodgkin lymphoma. Eur J Nucl Med Mol Imaging 37:1824–1833PubMedCrossRefGoogle Scholar
  70. 70.
    Horning SJ, Juweid ME, Schöder H et al (2010) Interim positron emission tomography scans in diffuse large B-cell lymphoma: an independent expert nuclear medicine evaluation of the Eastern Cooperative Oncology Group E3404 study. Blood 115:775–777PubMedCrossRefGoogle Scholar
  71. 71.
    Kurch L, Hasenclever D, Elsner A et al (2012) Semiautomatic approach for discrimination between adequate and inadequate early response in FDG-PET/CT of paediatric Hodgkin lymphoma (PHL) patients. J Nucl Med 53:155Google Scholar
  72. 72.
    Wahl RL, Jacene H, Kasamon Y et al (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 5:122–150CrossRefGoogle Scholar
  73. 73.
    Casasnovas R, Meignan M, Berriolo-Riedinger A et al (2011) SUVmax reduction improves early prognosis value of interim positron emission tomography scans in diffuse large B-cell lymphoma. Blood 118:37–43PubMedCrossRefGoogle Scholar
  74. 74.
    Moskowitz C (2012) Diffuse large B cell lymphoma: how can we cure more patients in 2012? Best Pract Res Clin Haematol 25:41–47PubMedCrossRefGoogle Scholar
  75. 75.
    Dührsen U, Hüttmann A, Jöckel KH et al (2009) Positron emission tomography guided therapy of aggressive non-Hodgkin lymphoma—the PETAL trial. Leuk Lymphoma 50:1757–1760PubMedCrossRefGoogle Scholar
  76. 76.
    Lin C, Itti E, Haioun C et al (2007) Early 18F-FDG PET for prediction of prognosis in patients with diffuse large B-cell lymphoma SUV-based assessment versus visual analysis. J Nucl Med 48:1626–1632PubMedCrossRefGoogle Scholar
  77. 77.
    Pregno P, Chiappella A, Bello M et al (2012) Interim 18-FDG-PET/CT failed to predict the outcome in diffuse large B-cell lymphoma patients treated at the diagnosis with rituximab-CHOP. Blood 119:2066–2073PubMedCrossRefGoogle Scholar
  78. 78.
    Safar V, Dupuis J, Itti E et al (2012) Interim [18F]fluorodeoxyglucose positron emission tomography scan in diffuse large B-cell lymphoma treated with anthracycline-based chemotherapy plus rituximab. J Clin Oncol 30:184–190PubMedCrossRefGoogle Scholar
  79. 79.
    Amthauer H, Furth C, Denecke T et al (2005) FDG-PET in 10 children with non-Hodgkin’s lymphoma: initial experience in staging and follow-up. Klin Pädiatr 217:327–333PubMedCrossRefGoogle Scholar
  80. 80.
    Mody RJ, Bui C, Hutchinson RJ et al (2007) Comparison of 18F fluorodeoxyglucose PET with Ga-67 scintigraphy and conventional imaging modalities in pediatric lymphoma. Leuk Lymphoma 48:699–707PubMedCrossRefGoogle Scholar
  81. 81.
    Riad R, Omar W, Sidhom I et al (2010) False-positive F-18 FDG uptake in PET/CT studies in pediatric patients with abdominal Burkitt’s lymphoma. Nucl Med Commun 31:232–238PubMedCrossRefGoogle Scholar
  82. 82.
    Filmont J, Gisselbrecht C, Cuenca X et al (2007) The impact of pre- and post-transplantation positron emission tomography using 18-fluorodeoxyglucose on poor-prognosis lymphoma patients undergoing autologous stem cell transplantation. Cancer 110:1361–1369PubMedCrossRefGoogle Scholar
  83. 83.
    Becherer A, Mitterbauer M, Jaeger U et al (2002) Positron emission tomography with [18F]2-fluoro-D-2-deoxyglucose (FDG-PET) predicts relapse of malignant lymphoma after high-dose therapy with stem cell transplantation. Leukemia 16:260–267PubMedCrossRefGoogle Scholar
  84. 84.
    Spaepen K, Stroobants S, Dupont P et al (2003) Prognostic value of pretransplantation positron emission tomography using fluorine 18-fluorodeoxyglucose in patients with aggressive lymphoma treated with high-dose chemotherapy and stem cell transplantation. Blood 102:53–59PubMedCrossRefGoogle Scholar
  85. 85.
    Qiao W, Zhao J, Wang C et al (2010) Predictive value of (18)F-FDG hybrid PET/CT for the clinical outcome in patients with non-Hodgkin’s lymphoma prior to and after autologous stem cell transplantation. Hematology 15:21–27PubMedCrossRefGoogle Scholar
  86. 86.
    Jabbour E, Hosing C, Avers G et al (2007) Pretransplant positive positron emission tomography/gallium scan predict poor outcome in patients with recurrent/refractory Hodgkin lymphoma. Cancer 109:2481–2489PubMedCrossRefGoogle Scholar
  87. 87.
    Moskowitz AJ, Yahalom J, Kewalramani T et al (2010) Pretransplantation functional imaging predicts outcome following autologous stem cell transplantation for relapsed and refractory Hodgkin lymphoma. Blood 116:4934–4937PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Regine Kluge
    • 1
    Email author
  • Lars Kurch
    • 1
  • Françoise Montravers
    • 2
  • Christine Mauz-Körholz
    • 3
  1. 1.Department of Nuclear MedicineUniversity Hospital LeipzigLeipzigGermany
  2. 2.Department of Nuclear MedicineHospital TenonParisFrance
  3. 3.Department of PaediatricsUniversity Hospital HalleHalle (Saale)Germany

Personalised recommendations