Pediatric Radiology

, Volume 43, Issue 4, pp 464–473

MRI for the diagnosis of recurrent middle ear cholesteatoma in children—can we optimize the technique? Preliminary study

  • Anne Geoffray
  • Myriam Guesmi
  • Jean François Nebbia
  • Béatrice Leloutre
  • Sonanda Bailleux
  • Claude Maschi
Original Article



Recurrent cholesteatoma after surgical excision occurs frequently in children. Until recently, a surgical second look was mandatory and considered as standard reference. MRI including a delayed T1 sequence after gadolinium injection and diffusion-weighted imaging (DWI) has proved its efficiency but has been evaluated mainly in adults.


Our purpose was to evaluate the accuracy of DWI to diagnose recurrence of cholesteatoma in children.

Materials and methods

We evaluated prospectively with MRI 20 ears in 18 children who had had surgery for cholesteatoma. We compared DWI and delayed T1-weighted images following gadolinium administration with intraoperative or follow-up findings. We calculated the sensitivity and specificity of each sequence for the diagnosis of recurrent cholesteatoma.


Sensitivity to diagnose recurrent cholesteatoma was 87% for both DWI and delayed post-gadolinium sequences, specificity was 71% and 83%, respectively. Adding both sequences, the sensitivity was 87%, the specificity 100%. There was one false negative probably due to small size recurrence.


In our series, DWI was reliable to diagnose recurrent cholesteatoma in children and allows avoiding surgery when negative. However, because small recurrences less than 5 mm may be missed, follow-up must be prolonged (5 years).


MRI Cholesteatoma Child Diffusion-weighted MRI 


  1. 1.
    De Foer B, Vercruysse JP, Pouillon M et al (2007) Value of high-resolution computed tomography and magnetic resonance imaging in the detection of residual cholesteatomas in primary bony obliterated mastoids. Am J Otolaryngol 28:230–234PubMedCrossRefGoogle Scholar
  2. 2.
    Blaney SP, Tierney P, Oyarazabal M et al (2000) CT scanning in “second look” combined approach tympanoplasty. Rev Laryngol-Otol-Rhinol 121:79–81Google Scholar
  3. 3.
    Williams MT, Ayache D, Alberti C et al (2003) Detection of postoperative residual cholesteatoma with delayed contrast-enhanced MR imaging: initial findings. Eur Radiol 13:169–174PubMedGoogle Scholar
  4. 4.
    Aikele P, Kittner T, Offergeld C et al (2003) Diffusion-weighted MR imaging of cholesteatoma in pediatric and adult patients who have undergone middle ear surgery. AJR 181:261–265PubMedCrossRefGoogle Scholar
  5. 5.
    Dubrulle F, Souillard R, Chechin D et al (2006) Diffusion-weighted MR imaging sequence in the detection of postoperative recurrent cholesteatoma. Radiology 238:604–610PubMedCrossRefGoogle Scholar
  6. 6.
    Rajan GP, Ambett R, Wun L et al (2010) Preliminary outcomes of cholesteatoma screening in children using non-echo-planar diffusion-weighted magnetic resonance imaging. Int J Pediatr Otorhinolaryngol 74:297–301PubMedCrossRefGoogle Scholar
  7. 7.
    Williams MT, Ayache D (2004) Imaging of the postoperative middle ear. Eur Radiol 14:482–495PubMedCrossRefGoogle Scholar
  8. 8.
    Glas A, Lijmer J, Prins M et al (2003) The diagnostic odds ratio: a single indicator of test performance. J Clin Epidemiol 56:1129–1135PubMedCrossRefGoogle Scholar
  9. 9.
    Aarts MC, Rovers MM, van der Veen EL et al (2010) The diagnostic value of diffusion-weighted magnetic resonance imaging in detecting a residual cholesteatoma. Otolaryngol Head Neck Surg 143:12–16PubMedCrossRefGoogle Scholar
  10. 10.
    Cimsit NC, Cimsit C, Baysal B et al (2010) Diffusion-weighted MR imaging in postoperative follow-up: reliability for detection of recurrent cholesteatoma. Eur J Radiol 74:121–123PubMedCrossRefGoogle Scholar
  11. 11.
    Kemppainen HO, Puhakka HJ, Laippala PJ et al (1999) Epidemiology and aetiology of middle ear cholesteatoma. Acta Otolaryngol 119:568–572PubMedCrossRefGoogle Scholar
  12. 12.
    Spilsbury K, Miller I, Semmens JB et al (2010) Factors associated with developing cholesteatoma: a study of 45,980 children with middle ear disease. Laryngoscope 120:625–630PubMedCrossRefGoogle Scholar
  13. 13.
    Brackmann DE (1993) Tympanoplasty with mastoidectomy: canal wall up procedures. Am J Otolaryngol 14:380–382Google Scholar
  14. 14.
    Ayache D, Schmerber S, Lavieille JP et al (2006) Middle ear cholesteatoma. Ann Otolaryngol Chir Cervicofac 123:120–137PubMedCrossRefGoogle Scholar
  15. 15.
    Darrouzet V, Duclos JY, Portmann D et al (2000) Preference for the closed technique in the management of cholesteatoma of the middle ear in children: a retrospective study of 215 consecutive patients treated over 10 years. Am J Otolaryngol 21:474–481Google Scholar
  16. 16.
    Roger G, Tashjian G, Roelly P et al (1994) Poches de rétraction fixées et cholestéatomes de l’enfant. notre expérience à propos de 199 cas. Ann Otolaryngol Chir Cervicofac 111:103–109PubMedGoogle Scholar
  17. 17.
    Dhepnorrarat RC, Wood B, Rajan GP (2009) Postoperative non-echo-planar diffusion-weighted magnetic resonance imaging changes after cholesteatoma surgery: implications for cholesteatoma screening. Otol Neurotol 30:54–58PubMedCrossRefGoogle Scholar
  18. 18.
    Khemani S, Singh A, Lingam RK et al (2011) Imaging of postoperative middle ear cholesteatoma. Clin Radiol 66:760–767PubMedCrossRefGoogle Scholar
  19. 19.
    Fitzek C, Mewes T, Fitzek S et al (2002) Diffusion-weighted MRI of cholesteatomas of the petrous bone. J Magn Reson Imaging 15:636–641PubMedCrossRefGoogle Scholar
  20. 20.
    Provenzale JM, Engelter ST, Petrella JR et al (1999) Use of MR exponential diffusion-weighted images to eradicate T2 “shine-through” effect. AJR 172:537–539PubMedCrossRefGoogle Scholar
  21. 21.
    Vercruysse JP, De Foer B, Pouillon M et al (2006) The value of diffusion-weighted MR imaging in the diagnosis of primary acquired and residual cholesteatoma: a surgical verified study of 100 patients. Eur Radiol 16:1461–1467PubMedCrossRefGoogle Scholar
  22. 22.
    De Foer B, Vercruysse JP, Bernaerts A et al (2007) The value of single-shot turbo spin-echo diffusion-weighted MR imaging in the detection of middle ear cholesteatoma. Neuroradiology 49:841–848PubMedCrossRefGoogle Scholar
  23. 23.
    Stasolla A, Magliulo G, Lo Mele L et al (2004) Value of echo-planar diffusion-weighted MRI in the detection of secondary and postoperative relapsing/residual cholesteatoma. Radiol Med 107:556–568PubMedGoogle Scholar
  24. 24.
    Jeunen G, Desloovere C, Hermans R et al (2008) The value of magnetic resonance imaging in the diagnosis of residual or recurrent acquired cholesteatoma after canal wall-up tympanoplasty. Otol Neurotol 29:16–18PubMedCrossRefGoogle Scholar
  25. 25.
    Venail F, Bonafe A, Poirrier V (2008) Comparison of echo-planar diffusion-weighted imaging and delayed postcontrast T1-weighted MR imaging for the detection of residual cholesteatoma. AJNR 29:1363–1368PubMedCrossRefGoogle Scholar
  26. 26.
    De Foer B, Vercruysse JP, Bernaerts A et al (2010) Middle ear cholesteatoma: non-echo-planar diffusion-weighted MR imaging versus delayed gadolinium-enhanced T1-weighted MR imaging–value in detection. Radiology 255:866–872PubMedCrossRefGoogle Scholar
  27. 27.
    Flook E, Izzat S, Ismail A (2011) Cholesteatoma imaging using modified echo-planar diffusion-weighted magnetic resonance imaging. J Laryngol Otol 125:10–12Google Scholar
  28. 28.
    Huins CT, Singh A, Lingam RK et al (2010) Detecting cholesteatoma with non-echo planar (HASTE) diffusion-weighted magnetic resonance imaging. Otolaryngol Head Neck Surg 143:141–146PubMedCrossRefGoogle Scholar
  29. 29.
    Jindal M, Doshi J, Srivastav M et al (2010) Diffusion-weighted magnetic resonance imaging in the management of cholesteatoma. Eur Arch Otorhinolaryngol 267:181–185PubMedCrossRefGoogle Scholar
  30. 30.
    Pizzini FB, Barbieri F, Beltramello A et al (2010) HASTE diffusion-weighted 3-Tesla magnetic resonance imaging in the diagnosis of primary and relapsing cholesteatoma. Otol Neurotol 31:596–602PubMedGoogle Scholar
  31. 31.
    Khemani S, Lingam RK, Kalan A et al (2011) The value of non-echo planar HASTE diffusion-weighted MR imaging in the detection, localisation and prediction of extent of postoperative cholesteatoma. Clin Otolaryngol 36:306–312PubMedCrossRefGoogle Scholar
  32. 32.
    De Foer B, Vercruysse JP, Bernaerts A et al (2008) Detection of postoperative residual cholesteatoma with non-echo-planar diffusion-weighted magnetic resonance imaging. Otol Neurotol 29:513–517PubMedCrossRefGoogle Scholar
  33. 33.
    Thiriat S, Riehm S, Kremer S et al (2009) Apparent diffusion coefficient values of middle ear cholesteatoma differ from abscess and cholesteatoma admixed infection. AJNR 30:1123–1126PubMedCrossRefGoogle Scholar
  34. 34.
    Nagai N, Tono T, Matsuda K et al (2007) Value of diffusion-weighted MR imaging in the detection of middle ear cholesteatoma. Nippon Jibiinkoka Gakkai Kaiho 110:707–712PubMedCrossRefGoogle Scholar
  35. 35.
    Plouin-Gaudon I, Bossard D, Fuchsmann C et al (2010) Diffusion-weighted MR imaging for evaluation of pediatric recurrent cholesteatomas. Int J Pediatr Otorhinolaryngol 74:22–26PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Anne Geoffray
    • 1
  • Myriam Guesmi
    • 1
  • Jean François Nebbia
    • 1
  • Béatrice Leloutre
    • 1
  • Sonanda Bailleux
    • 1
  • Claude Maschi
    • 1
  1. 1.Fondation LenvalNiceFrance

Personalised recommendations