Pediatric Radiology

, Volume 43, Issue 1, pp 15–27

Diffusion tensor imaging of normal brain development

  • Shoko Yoshida
  • Kenichi Oishi
  • Andreia V. Faria
  • Susumu Mori
Minisymposium

Abstract

Diffusion tensor imaging (DTI) is an MRI technique that can measure the macroscopic structural organization in brain tissues. DTI has been shown to provide information complementary to relaxation-based MRI about the changes in the brain’s microstructure. In the pediatric population, DTI enables quantitative observation of the maturation process of white matter structures. Its ability to delineate various brain structures during developmental stages makes it an effective tool with which to characterize both the normal and abnormal anatomy of the developing brain. This review will highlight the advantages, as well as the common technical pitfalls of pediatric DTI. In addition, image quantification strategies for various DTI-derived parameters and the normal brain developmental changes associated with these parameters are discussed.

Keywords

Diffusion tensor imaging (DTI) MRI Normal development 

References

  1. 1.
    Barkovich AJ, Raybaud C (2012) Pediatric neuroimaging, 5th edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  2. 2.
    Keene MFL, Hewer EE (1931) Some observations on myelination in the human nervous system. J Anat 6:1–13Google Scholar
  3. 3.
    van der Knaap MS, Valk J (2005) Magnetic resonance of myelination and myelin disorders, 3rd edn. Springer, BerlinGoogle Scholar
  4. 4.
    Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell, OxfordGoogle Scholar
  5. 5.
    Ballesteros MC, Hansen PE, Solla K (1993) MR imaging of the developing human brain. Part 2. Postnatal development. Radiographics 13:611–622PubMedGoogle Scholar
  6. 6.
    Barkovich AJ, Kios BO, Jackson DE Jr et al (1988) Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 166:173–180PubMedGoogle Scholar
  7. 7.
    Konishi Y, Hayakawa K, Kuriyama M et al (1993) Developmental features of the brain in preterm and fullterm infants on MR imaging. Early Hum Dev 34:155–162PubMedCrossRefGoogle Scholar
  8. 8.
    van der Knaap MS, Valk J (1990) MR imaging of various stages of normal myelination during the first year of life. Neuroradiology 31:459–470PubMedCrossRefGoogle Scholar
  9. 9.
    Barkovich AJ (2000) Concepts of myelin and myelination in neuroradiology. AJNR 21:1099–1109PubMedGoogle Scholar
  10. 10.
    Brody BA, Kinney HC, Kloman AS et al (1987) Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropathol Exp Neurol 46:283–301PubMedCrossRefGoogle Scholar
  11. 11.
    Huppi PS, Warfield S, Kikinis R et al (1998) Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann Neurol 43:224–235PubMedCrossRefGoogle Scholar
  12. 12.
    Inder TE, Warfield SK, Wang H et al (2005) Abnormal cerebral structures is present at term in premature infants. Pediatrics 115:286–294PubMedCrossRefGoogle Scholar
  13. 13.
    Kinney HC, Brody BA, Kloman AS et al (1988) Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J Neuropathol Exp Neurol 47:217–234PubMedCrossRefGoogle Scholar
  14. 14.
    Mukherjee P, Miller JH, Shimony JS et al (2001) Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging. Radiology 221:349–358PubMedCrossRefGoogle Scholar
  15. 15.
    Mukherjee P, Miller JH, Shimony JS et al (2002) Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. AJNR 23:1445–1456PubMedGoogle Scholar
  16. 16.
    Neil JJ, Shiran SI, McKinstry RC et al (1998) Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 209:57–66PubMedGoogle Scholar
  17. 17.
    Petanjek Z, Judas M, Kostovic I et al (2008) Lifespan alterations of basal dendritic trees of pyramidal neurons in the human prefrontal cortex: a layer-specific pattern. Cereb Cortex 18:915–929PubMedCrossRefGoogle Scholar
  18. 18.
    Alexander AL, Lee JE, Lazar M et al (2007) Diffusion tensor imaging of the brain. Neurotherapeutics 4:316–329PubMedCrossRefGoogle Scholar
  19. 19.
    Bartha AI, Yap KR, Miller SP et al (2007) The normal neonatal brain: MR imaging, diffusion tensor imaging, and 3D MR spectroscopy in healthy term neonates. AJNR 28:1015–1021PubMedCrossRefGoogle Scholar
  20. 20.
    Cascio CJ, Gerig G, Piven J (2007) Diffusion tensor imaging: application to the study of the developmental brain. J Am Acad Child Adolesc Psychiatry 46:213–223PubMedCrossRefGoogle Scholar
  21. 21.
    Ding XQ, Sun Y, Braass H et al (2008) Evidence of rapid ongoing brain development beyond 2 years of age detected by fiber tracking. AJNR 29:1261–1265PubMedCrossRefGoogle Scholar
  22. 22.
    Dubois J, Hertz-Pannier L, Dehaene-Lambertz G et al (2006) Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography. Neuroimage 30:1121–1132PubMedCrossRefGoogle Scholar
  23. 23.
    Engelbrecht V, Scherer A, Rassek M et al (2002) Diffusion-weighted MR imaging in the brain in children: findings in the normal brain and in the brain with white matter diseases. Radiology 222:410–418PubMedCrossRefGoogle Scholar
  24. 24.
    Gilmore JH, Lin W, Corouge I et al (2007) Early postnatal development of corpus callosum and corticospinal white matter assessed with quantitative tractography. AJNR 28:1789–1795PubMedCrossRefGoogle Scholar
  25. 25.
    Hasan KM, Halphen C, Sankar A et al (2007) Diffusion tensor imaging-based tissue segmentation: validation and application to the developing child and adolescent brain. Neuroimage 34:1497–1505PubMedCrossRefGoogle Scholar
  26. 26.
    Hasan KM, Sankar A, Halphen C et al (2007) Development and organization of the human brain tissue compartments across the lifespan using diffusion tensor imaging. Neuroreport 18:1735–1739PubMedCrossRefGoogle Scholar
  27. 27.
    Hermoye L, Saint-Martin C, Cosnard G et al (2006) Pediatric diffusion tensor imaging: normal database and observation of the white matter maturation in early childhood. Neuroimage 29:493–504PubMedCrossRefGoogle Scholar
  28. 28.
    Huang H, Zhang J, Wakana S et al (2006) White and gray matter development in human fetal, newborn and pediatric brains. Neuroimage 33:27–38PubMedCrossRefGoogle Scholar
  29. 29.
    Huppi PS, Dubois J (2006) Diffusion tensor imaging of brain development. Semin Fetal Neonatal Med 11:489–497PubMedCrossRefGoogle Scholar
  30. 30.
    Le Bihan D (2003) Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4:469–480PubMedCrossRefGoogle Scholar
  31. 31.
    Moseley M (2002) Diffusion tensor imaging and aging—a review. NMR Biomed 15:553–560PubMedCrossRefGoogle Scholar
  32. 32.
    Snook L, Paulson LA, Roy D et al (2005) Diffusion tensor imaging of neurodevelopment in children and young adults. Neuroimage 26:1164–1173PubMedCrossRefGoogle Scholar
  33. 33.
    Stegemann T, Heimann M, Dusterhus P et al (2006) Diffusion tensor imaging (DTI) and its importance for exploration of normal or pathological brain development. Fortschr Neurol Psychiatr 74:136–148PubMedCrossRefGoogle Scholar
  34. 34.
    Miller JH, McKinstry RC, Philip JV et al (2003) Diffusion-tensor MR imaging of normal brain maturation: a guide to structural development and myelination. AJR 180:851–859PubMedGoogle Scholar
  35. 35.
    Huppi PS, Inder TE (2001) Magnetic resonance techniques in the evaluation of the perinatal brain: recent advances and future directions. Semin Neonatol 6:195–210PubMedCrossRefGoogle Scholar
  36. 36.
    Limperopoulos C (2010) Advanced neuroimaging techniques: their role in the development of future fetal and neonatal neuroprotection. Semin Perinatol 34:93–101PubMedCrossRefGoogle Scholar
  37. 37.
    Neil JJ, Miller J, Mukherjee P et al (2002) Diffusion tensor imaging of normal and injured developing human brain—a technical review. NMR Biomed 15:543–552PubMedCrossRefGoogle Scholar
  38. 38.
    Lee SK, Kim DI, Kim J et al (2005) Diffusion-tensor MR imaging and fiber tractography: a new method of describing aberrant fiber connections in development CNS abnormalities. RadioGraphics 25:53–65PubMedCrossRefGoogle Scholar
  39. 39.
    Tournier JD, Mori S, Leemans A (2011) Diffusion tensor imaging and beyond. Magn Reson Med 65:1532–1556PubMedCrossRefGoogle Scholar
  40. 40.
    Wedeen VJ, Hagmann P, Tseng WY et al (2005) Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med 54:1377–1386PubMedCrossRefGoogle Scholar
  41. 41.
    Frank LR (2002) Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med 47:1083–1099PubMedCrossRefGoogle Scholar
  42. 42.
    Tournier JD, Calamante F, Gadian DG et al (2004) Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage 23:1176–1185PubMedCrossRefGoogle Scholar
  43. 43.
    Tuch DS, Reese TG, Wiegell MR et al (2003) Diffusion MRI of complex neural architecture. Neuron 40:885–895PubMedCrossRefGoogle Scholar
  44. 44.
    Mukherjee P, Hess CP, Xu D et al (2008) Development and initial evaluation of 7-T q-ball imaging of the human brain. Magn Reson Imaging 26:171–180PubMedCrossRefGoogle Scholar
  45. 45.
    Hoon AH Jr, Jr LWT, Melhem ER et al (2002) Diffusion tensor imaging of periventricular leukomalacia shows affected sensory cortex white matter pathways. Neurology 59:752–756PubMedCrossRefGoogle Scholar
  46. 46.
    Arzoumanian Y, Mirmiran M, Barnes PD et al (2003) Diffusion tensor brain imaging findings at term-equivalent age may predict neurologic abnormalities in low birth weight preterm infants. AJNR 24:1646–1653PubMedGoogle Scholar
  47. 47.
    Thomas B, Elyssen M, Peeters R et al (2005) Quantitative diffusion tensor imaging in cerebral palsy due to periventricular white matter injury. Brain 128:2562–2577PubMedCrossRefGoogle Scholar
  48. 48.
    Nagae LM, Hoon AH Jr, Stashinko E et al (2007) Diffusion tensor imaging in children with periventricular leukomalacia: variability of injuries to white matter tracts. AJNR 28:1213–1222PubMedCrossRefGoogle Scholar
  49. 49.
    Glenn OA, Ludeman NA, Berman JI et al (2007) Diffusion tensor MR imaging tractography of the pyramidal tracts correlates with clinical motor function in children with congenital hemiparesis. AJNR 28:1796–1802PubMedCrossRefGoogle Scholar
  50. 50.
    Murakami A, Morimoto M, Yamada K et al (2008) Fiber-tracking techniques can predict the degree of neurologic impairment for periventricular leukomalacia. Pediatrics 122:500–506PubMedCrossRefGoogle Scholar
  51. 51.
    Ludeman NA, Berman JI, Wu YW et al (2008) Diffusion tensor imaging of the pyramidal tracts in infants with motor dysfunction. Neurology 71:1676–1682PubMedCrossRefGoogle Scholar
  52. 52.
    Hoon AH Jr, Stashinko EE, Nagae LM et al (2009) Sensory and motor deficits in children with cerebral palsy born preterm correlates with diffusion tensor imaging abnormalities in thalamocortical pathways. Dev Med Child Neurol 52:697–704CrossRefGoogle Scholar
  53. 53.
    Yoshida S, Hayakawa K, Yamamoto A et al (2010) Quantitative diffusion tensor tractography of the motor and sensory tract in children with cerebral palsy. Dev Med Child Neurol 52:935–940PubMedCrossRefGoogle Scholar
  54. 54.
    Frye RE, Hasan K, Malmberg B et al (2010) Superior longitudinal fasciculus and cognitive dysfunction in adolescents born preterm and at term. Dev Med Child Neurol 52:760–766PubMedCrossRefGoogle Scholar
  55. 55.
    Koerte I, Pelavin P, Kirmess B et al (2010) Anisotropy of transcallosal motor fibres indicates functional impairment in children with periventricular leukomalacia. Dev Med Child Neurol 53:179–186PubMedCrossRefGoogle Scholar
  56. 56.
    Yoshida S, Hayakawa K, Oishi K et al (2011) Athetotic and spastic cerebral palsy: anatomic characterization in diffusion tensor imaging. Radiology 260:511–520PubMedCrossRefGoogle Scholar
  57. 57.
    Holmstrom L, Lennartsson F, Eliasson AC et al (2011) Diffusion MRI in corticofugal fibers correlates with hand function in unilateral cerebral palsy. Neurology 77:775–783PubMedCrossRefGoogle Scholar
  58. 58.
    Hulshoff Pol HE, Schnack HG, Mandl RCW et al (2001) Focal gray matter density changes in schizophrenia. Arch Gen Psychiatry 58:1118–1125PubMedCrossRefGoogle Scholar
  59. 59.
    Good CD, Scahill RL, Fox NC et al (2002) Automatic differentiation of anatomical patterns in the human brain: validation with studies of degenerative dementias. Neuroimage 17:29–46PubMedCrossRefGoogle Scholar
  60. 60.
    Job DE, Whalley HC, McConnell S et al (2002) Structural gray matter differences between first-episode schizophrenics and normal controls using voxel-based morphometry. Neuroimage 17:880–889PubMedCrossRefGoogle Scholar
  61. 61.
    Kubicki M, Shenton ME, Salisbury DF et al (2001) Voxel-based morphometric analysis of gray matter in first episode schizophrenia. Neuroimage 17:1711–1719CrossRefGoogle Scholar
  62. 62.
    Counsell SJ, Edward AD, Chew AT et al (2008) Specific relations between neurodevelopmental abilities and white matter microstructure in children born preterm. Brain 131:3201–3208PubMedCrossRefGoogle Scholar
  63. 63.
    Gimenez M, Miranda MJ, Born AP et al (2008) Accelerated cerebral white matter development in preterm infants: a voxel-based morphometry study with diffusion tensor MR imaging. Neuroimage 41:728–734PubMedCrossRefGoogle Scholar
  64. 64.
    Tzarouchi LC, Astrakas LG, Xydis V et al (2009) Age-related gray matter changes in preterm infants: an MRI study. Neuroimage 47:1148–1153PubMedCrossRefGoogle Scholar
  65. 65.
    Sonia-Pastor S, Padilla N, Zubiaurre-Elorza L et al (2009) Decreased regional brain volume and cognitive impairment in preterm children at low risk. Pediatrics 124:1161–1170CrossRefGoogle Scholar
  66. 66.
    Lee JD, Park H, Park ES et al (2011) Motor pathway injury in patients with periventricular leucomalacia and spastic diplegia. Brain 134:1199–1210PubMedCrossRefGoogle Scholar
  67. 67.
    Davatzikos C (2004) Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. Neuroimage 23:17–20PubMedCrossRefGoogle Scholar
  68. 68.
    Ball G, Counsell SJ, Anjari M et al (2010) An optimized tract-based spatial statistics protocol for neonates: applications to prematurity and chronic lung disease. Neuroimage 53:94–102PubMedCrossRefGoogle Scholar
  69. 69.
    van Kooij BJM, de Vries LS, Ball G et al (2012) Neonatal tract-based spatial statistics findings and outcome in preterm infants. AJNR 33:188–194PubMedCrossRefGoogle Scholar
  70. 70.
    Smith SM, Jenkinson M, Johansen-Berg H et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505PubMedCrossRefGoogle Scholar
  71. 71.
    Oishi K, Mori S, Donohue PK et al (2011) Multi-contrast human neonatal brain atlas: application to normal neonate developmental analysis. Neuroimage 56:8–20PubMedCrossRefGoogle Scholar
  72. 72.
    Faria AV, Zhang J, Oishi K et al (2010) Atlas-based analysis of neurodevelopment from infancy to adult hood using diffusion tensor imaging and applications for automated abnormality detection. Neuroimage 52:415–428PubMedCrossRefGoogle Scholar
  73. 73.
    Faria AV, Hoon AH Jr, Stashinko EE et al (2011) Quantitative analysis of brain pathology based on MRI and brain atlases-applications for cerebral palsy. Neuroimage 54:1854–1861PubMedCrossRefGoogle Scholar
  74. 74.
    Schneider JF, Il’yasow KA, Hennig J et al (2004) Fast quantitative diffusion-tensor imaging of cerebral white matter from the neonatal period to adolescence. Neuroradiology 46:258–266PubMedCrossRefGoogle Scholar
  75. 75.
    Berman JI, Mukherjee P, Partridge SC et al (2005) Quantitative diffusion tensor MRI fiber tractography of sensorimotor white matter development in premature infants. Neuroimage 27:862–871PubMedCrossRefGoogle Scholar
  76. 76.
    Dubois J, Dehaene-Lambertz G, Perrin M et al (2008) Asynchrony of the early maturation of white matter bundles in healthy infants: quantitative landmarks revealed noninvasively by diffusion tensor imaging. Hum Brain Mapp 29:14–27PubMedCrossRefGoogle Scholar
  77. 77.
    Gao W, Lin W, Chen Y et al (2009) Temporal and spatial development of axonal maturation and myelination of white matter in the developing brain. AJNR 30:290–296PubMedCrossRefGoogle Scholar
  78. 78.
    Huppi PS, Maier SE, Peled S et al (1998) Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 44:584–590PubMedCrossRefGoogle Scholar
  79. 79.
    Lobel U, Sedlacik J, Gullmar D et al (2009) Diffusion tensor imaging: the normal evolution of ADC, RA, FA and eigenvalues studied in multiple anatomical regions of the brain. Neuroradiology 51:253–263PubMedCrossRefGoogle Scholar
  80. 80.
    Partridge SC, Mukherjee P, Berman JI et al (2005) Tractography-based quantitation of diffusion tensor imaging parameters in white matter tracts of preterm newborns. J Magn Reson Imaging 22:467–474PubMedCrossRefGoogle Scholar
  81. 81.
    Paus T, Collins DL, Evans AC et al (2001) Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res Bull 54:255–266PubMedCrossRefGoogle Scholar
  82. 82.
    Provenzale JM, Liang L, DeLong D et al (2007) Diffusion tensor imaging assessment of brain white matter maturation during the first postnatal year. AJR 189:476–486PubMedCrossRefGoogle Scholar
  83. 83.
    Maas LC, Mukherjee P, Carballido-Gamio J et al (2004) Early laminar organization of the human cerebrum demonstrated with diffusion tensor imaging in extremely premature infants. Neuroimage 22:1134–1140PubMedCrossRefGoogle Scholar
  84. 84.
    Beauchamp N Jr, Bryan RN, van Zijl PC (1997) Absolute quantitation of diffusion constants in human stroke. Stroke 28:483–490PubMedCrossRefGoogle Scholar
  85. 85.
    McGraw P, Liang L, Provenzale JM (2002) Evaluation of normal age-related changes in anisotropy during infancy and childhood as shown by diffusion tensor imaging. AJR 179:1515–1522PubMedGoogle Scholar
  86. 86.
    Suzuki Y, Matsukawa H, Kwee IL et al (2003) Absolute eigenvalue diffusion tensor analysis for human brain maturation. NMR Biomed 16:257–260PubMedCrossRefGoogle Scholar
  87. 87.
    Partridge SC, Mukherjee P, Henry RG et al (2004) Diffusion tensor imaging: serial quantitation of white matter tract maturity in premature newborns. Neuroimage 22:1302–1314PubMedCrossRefGoogle Scholar
  88. 88.
    Yoo SS, Park HJ, Soul JS et al (2005) In vivo visualization of white matter fiber tracts of preterm- and term-infant brains with diffusion tensor magnetic resonance imaging. Invest Radiol 40:110–115PubMedCrossRefGoogle Scholar
  89. 89.
    Mukherjee P, McKinstry RC (2006) Diffusion tensor imaging and tractography of human brain development. Neuroimaging Clin N Am 16:19–43, viiPubMedCrossRefGoogle Scholar
  90. 90.
    Provenzale JM, Isaacson J, Chen S et al (2010) Correlation of apparent diffusion coefficient and fractional anisotropy values in the developing infant brain. AJR 195:456–462CrossRefGoogle Scholar
  91. 91.
    Schmithorst VJ, Wike M, Dardzinski BJ et al (2002) Correlation of white matter diffusivity and anisotropy with age during childhood and adolescence: a cross-sectional diffusion-tensor MR imaging study. Radiology 222:212–218PubMedCrossRefGoogle Scholar
  92. 92.
    Kostovic I, Jovanov-Milosevic N (2006) The development of cerebral connections during the first 20–45 weeks’ gestation. Semin Fetal Neonatal Med 11:415–422PubMedCrossRefGoogle Scholar
  93. 93.
    Drobysehvsky A, Song SK, Gamkrelidze G et al (2005) Developmental changes in diffusion anisotropy coincide with immature oligodendtocyte progression and maturation of compound action potential. J Neurosci 25:5988–5997CrossRefGoogle Scholar
  94. 94.
    Zhai G, Lin W, Wilber KP et al (2003) Comparisons of regional white matter diffusion in healthy neonates and adults performed with a 3.0-T head-only MR imaging unit. Radiology 229:673–681PubMedCrossRefGoogle Scholar
  95. 95.
    Bayer SA, Altman J (2004) The human brain during the third trimester. CRC Press, Boca Raton, pp 1–392Google Scholar
  96. 96.
    Baratti C, Barnett A, Pierpaoli C (1999) Comparative MR imaging study of brain maturation in kittens with T1, T2, and the trace of the diffusion tensor. Radiology 210:133–142PubMedGoogle Scholar
  97. 97.
    McKinstry RC, Mathur A, Miller JH et al (2002) Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI. Cereb Cortex 12:1237–1243PubMedCrossRefGoogle Scholar
  98. 98.
    Thornton JS, Ordidge RJ, Penrice J et al (1997) Anisotropic water diffusion in white and gray matter of the neonatal piglet brain before and after transient hypoxia-ischaemia. Magn Reson Imaging 15:433–440PubMedCrossRefGoogle Scholar
  99. 99.
    Mori S, Itoh R, Zhang J et al (2001) Diffusion tensor imaging of the developing mouse brain. Magn Reson Med 46:18–23PubMedCrossRefGoogle Scholar
  100. 100.
    Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51:527–539PubMedCrossRefGoogle Scholar
  101. 101.
    Zhang J, Richards LJ, Yarowsky P et al (2003) Three-dimensional anatomical characterization of the developing mouse brain by diffusion tensor microimaging. Neuroimage 20:1639–1648PubMedCrossRefGoogle Scholar
  102. 102.
    Kroenke CD, Bretthorst GL, Inder TE et al (2005) Diffusion MR imaging characteristics of the developing primate brain. Neuroimage 25:1205–1213PubMedCrossRefGoogle Scholar
  103. 103.
    Gupta RK, Hasan KM, Trivedi R et al (2005) Diffusion tensor imaging of the developing human cerebrum. J Neurosci Res 81:172–178PubMedCrossRefGoogle Scholar
  104. 104.
    Marin-Padilla M (1992) Ontogenesis of the pyramidal cell of the mammalian neocortex and developmental cytoarchitectonics: a unifying theory. J Comp Neurol 321:223–240PubMedCrossRefGoogle Scholar
  105. 105.
    Deipolyi AR, Mukherjee P, Gill K et al (2005) Comparing microstructural and macrostructural development of the cerebral cortex in premature newborns: diffusion tensor imaging versus cortical gyration. Neuroimage 27:579–586PubMedCrossRefGoogle Scholar
  106. 106.
    Takahashi E, Folkerth RD, Galaburda AM et al (2012) Emerging cerebral connectivity in the human fetal brain: an MR tractography study. Cereb Cortex 22:455–464PubMedCrossRefGoogle Scholar
  107. 107.
    Dubois J, Benders M, Lazeyras F et al (2010) Structural asymmetries of perisylvian regions in the preterm newborn. Neuroimage 52:32–42PubMedCrossRefGoogle Scholar
  108. 108.
    Dekaban AS (1978) Changes in brain weight during the in brain weight during the span of human life: relation of brain weights to body heights and body weights. Ann Neurol 4:345–356PubMedCrossRefGoogle Scholar
  109. 109.
    Lenroot RK, Giedd JN (2006) Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev 30:718–729PubMedCrossRefGoogle Scholar
  110. 110.
    Paus T, Zijdenbos A, Worsley K et al (1999) Structural maturation of neural pathways in children and adolescents: in vivo study. Science 283:1908–1911PubMedCrossRefGoogle Scholar
  111. 111.
    Thompson PM, Giedd JN, Woods RP et al (2000) Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature 404:190–193PubMedCrossRefGoogle Scholar
  112. 112.
    Hasan KM, Kamali A, Kramer LA et al (2008) Diffusion tensor quantification of the human midsagittal corpus callosum subdivisions across the lifespan. Brain Res 1227:52–67PubMedCrossRefGoogle Scholar
  113. 113.
    Klingberg T, Vaidya CJ, Gabrieli JD et al (1999) Myelination and organization of the frontal white matter in children: a diffusion tensor MRI study. Neuroreport 10:2817–2821PubMedCrossRefGoogle Scholar
  114. 114.
    Lebel C, Walker L, Leemans A et al (2008) Microstructural maturation of the human brain from childhood to adulthood. Neuroimage 40:1044–1055PubMedCrossRefGoogle Scholar
  115. 115.
    Qiu D, Tan LH, Zhou K et al (2008) Diffusion tensor imaging of normal white matter maturation from late childhood to young adulthood: voxel-wise evaluation of mean diffusivity, fractional anisotropy, radial and axial diffusivities, and correlation with reading development. Neuroimage 41:223–232PubMedCrossRefGoogle Scholar
  116. 116.
    Good CD, Johnsrude IS, Ashburner J et al (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14:21–36PubMedCrossRefGoogle Scholar
  117. 117.
    Sowell ER, Thompson PM, Tessner KD et al (2001) Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: inverse relationships during postadolescent brain maturation. J Neurosci 21:8819–8829PubMedGoogle Scholar
  118. 118.
    Giedd JN, Blumenthal J, Jeffries NO et al (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861–863PubMedCrossRefGoogle Scholar
  119. 119.
    Reiss AL, Abrams MT, Singer HS et al (1996) Brain development, gender and IQ in children. A volumetric imaging study. Brain 119:1763–1774PubMedCrossRefGoogle Scholar
  120. 120.
    Benedict RH, Bobholz JH (2007) Multiple sclerosis. Semin Neurol 27:78–85PubMedCrossRefGoogle Scholar
  121. 121.
    Bigler ED, Kerr B, Victoroff J et al (2002) White matter lesions, quantitative magnetic resonance imaging, and dementia. Alzheimer Dis Assoc Disord 16:161–170PubMedCrossRefGoogle Scholar
  122. 122.
    Bigler ED, Neeley ES, Miller MJ et al (2004) Cerebral volume loss, cognitive deficit and neuropsychological performance: comparative measures of brain atrophy: I. Dementia. J Int Neuropsychol Soc 10:442–452PubMedGoogle Scholar
  123. 123.
    Shaw P, Kabani NJ, Lerch JP et al (2008) Neurodevelopmental trajectories of the human cerebral cortex. J Neurosci 28:3586–3594PubMedCrossRefGoogle Scholar
  124. 124.
    Eyre JA, Miller S, Ramesh V (1991) Constancy of central conduction delays during development in man: investigation of motor and somatosensory pathways. J Physiol 434:441–452PubMedGoogle Scholar
  125. 125.
    Kandel ER, Schwarz JH, Jessel TM (2000) Principles of neural science, 4th edn. McGraw-Hill Medical, New YorkGoogle Scholar
  126. 126.
    Armand J, Olivier E, Edgley SA et al (1997) Postnatal development of corticospinal projections from motor cortex to the cervical enlargement in the macaque monkey. J Neurosci 17:251–266PubMedGoogle Scholar
  127. 127.
    Muller K, Homberg V, Lenard HG (1991) Magnetic stimulation of motor cortex and nerve roots in children. Maturation of cortico-motoneuronal projections. Electroencephalogr Clin Neurophysiol 81:63–70PubMedCrossRefGoogle Scholar
  128. 128.
    Nezu A, Kimura S, Uehara S et al (1997) Magnetic stimulation of motor cortex in children: maturity of corticospinal pathway and problem of clinical application. Brain Dev 19:176–180PubMedCrossRefGoogle Scholar
  129. 129.
    Pierpaoli C, Barnett A, Pajevic S et al (2001) Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. Neuroimage 13:1174–1185PubMedCrossRefGoogle Scholar
  130. 130.
    Gogtay N, Giedd JN, Lusk L et al (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA 101:8174–8179PubMedCrossRefGoogle Scholar
  131. 131.
    Salat DH, Tuch DS, Hevelone ND et al (2005) Age-related changes in prefrontal white matter measured by diffusion tensor imaging. Ann NY Acad Sci 1064:37–49PubMedCrossRefGoogle Scholar
  132. 132.
    Barres BA, Barde Y (2000) Neuronal and glial cell biology. Curr Opin Neurobiol 10:642–648PubMedCrossRefGoogle Scholar
  133. 133.
    Du Y, Dreyfus CF (2002) Oligodendrocytes as providers of growth factors. J Neurosci Res 68:647–654PubMedCrossRefGoogle Scholar
  134. 134.
    Fields RD, Stevens-Graham B (2002) New insights into neuron–glia communication. Science 298:556–562PubMedCrossRefGoogle Scholar
  135. 135.
    Barnea-Goraly N, Menon V, Eckert M et al (2005) White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study. Cereb Cortex 15:1848–1854PubMedCrossRefGoogle Scholar
  136. 136.
    Ben Bashat D, Ben Sira L, Graif M et al (2005) Normal white matter development from infancy to adulthood: comparing diffusion tensor and high b value diffusion weighted MR images. J Magn Reson Imaging 21:503–511PubMedCrossRefGoogle Scholar
  137. 137.
    Peters BD, Szeszko PR, Radua J et al (2012) White matter development in adolescence: diffusion tensor imaging and meta-analytic results. Schizophrenia Bull. May 2 [Epub ahead on print]Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Shoko Yoshida
    • 1
  • Kenichi Oishi
    • 2
  • Andreia V. Faria
    • 2
  • Susumu Mori
    • 3
    • 4
  1. 1.The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreUSA
  2. 2.The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreUSA
  3. 3.The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreUSA
  4. 4.F. M. Kirby Research Center for Functional Brain ImagingKennedy Krieger InstituteBaltimoreUSA

Personalised recommendations