Advertisement

Pediatric Radiology

, Volume 42, Issue 10, pp 1183–1194 | Cite as

The challenges of neonatal magnetic resonance imaging

  • Owen J. ArthursEmail author
  • Andrea Edwards
  • Topun Austin
  • Martin J. Graves
  • David J. Lomas
Review

Abstract

Improved neonatal survival rates and antenatal diagnostic imaging is generating a growing demand for postnatal MRI examinations. Neonatal brain MRI is now becoming standard clinical care in many settings, but with the exception of some research centres, the technique has not been optimised for imaging neonates and small children. Here, we review some of the challenges involved in neonatal MRI, including recent advances in overall MR practicality and nursing practice, to address some of the ways in which the MR experience could be made more neonate-friendly.

Keywords

Neonatal MRI Safety Magnetic resonance imaging 

Notes

Acknowledgments

The project was supported by the Addenbrooke's Charitable Trust, and the NIHR comprehensive Biomedical Research Centre award to Cambridge University Hospitals NHS Foundation Trust, in partnership with the University of Cambridge.

Conflicts of interests

None.

References

  1. 1.
    Johnson S, Fawke J, Hennessy E et al (2009) Neuro-developmental disability through 11 years of age in children born before 26 weeks of gestation. Pediatrics 124:e249–e257PubMedCrossRefGoogle Scholar
  2. 2.
    Marlow N, Rose AS, Rands CE et al (2005) Neuropsychological and educational problems at school age associated with neonatal encephalopathy. Arch Dis Child 90:F380–F387Google Scholar
  3. 3.
    Rutherford M, Srinivasan L, Dyet L et al (2006) Magnetic resonance imaging in perinatal brain injury: clinical presentation, lesions and outcome. Pediatr Radiol 36:582–592PubMedCrossRefGoogle Scholar
  4. 4.
    Ment LR, Bada HS, Barnes P et al (2002) Practice parameter: Neuroimaging of the neonate: Report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 58:1726–1738PubMedCrossRefGoogle Scholar
  5. 5.
    Rutherford M, Biarge MM, Allsop J et al (2010) MRI of perinatal brain injury. Pediatr Radiol 40:819–833PubMedCrossRefGoogle Scholar
  6. 6.
    Woodward LJ, Anderson PJ, Austin NC et al (2006) Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med 355:685–694PubMedCrossRefGoogle Scholar
  7. 7.
    Jokhi RP, Whitby EH (2011) Magnetic resonance imaging of the fetus. Dev Med Child Neurol 53:18–28PubMedCrossRefGoogle Scholar
  8. 8.
    Kilian AK, Schaible T, Hofmann V et al (2009) Congenital diaphragmatic hernia: Predictive value of MRI relative lung-to-head ration compared with MRI fetal lung volume and sonographic lung-to-head ratio. AJR 192:153–158PubMedCrossRefGoogle Scholar
  9. 9.
    Rutherford MA (2001) MRI of the neonatal brain. Saunders, UK. Available online at http://www.mrineonatalbrain.com/index.php. Accessed November 2011
  10. 10.
    Sury MR, Smith JH (2008) Deep sedation and minimal anesthesia. Paediatr Anaesth 18:18–24PubMedGoogle Scholar
  11. 11.
    Sury MR, Hatch DJ, Deeley T et al (1999) Development of a nurse-led sedation service for paediatric magnetic resonance imaging. Lancet 353:1667–1671PubMedCrossRefGoogle Scholar
  12. 12.
    Dala PG, Murray D, Cox T et al (2006) Sedation and aesthesia protocols used for magnetic resonance imaging studies in infants: provider and pharmacological considerations. Anesth Analg 103:863–868CrossRefGoogle Scholar
  13. 13.
    Beebe DS, Tran P, Bragg M et al (2000) Trained nurses can provide safe and effective sedation for MRI in pediatric patients. Can J Anaesth 47:205–210PubMedCrossRefGoogle Scholar
  14. 14.
    Malviya S, Voepel-Lewis T, Prochaska G et al (2000) Prolonged recovery and delayed side effects of sedation for diagnostic imaging studies in children. Pediatrics 105:e42PubMedCrossRefGoogle Scholar
  15. 15.
    Hummel P, Puchalski M, Creech SD et al (2008) Clinical reliability and validity of the N-PASS: neonatal pain, agitation and sedation scale with prolonged pain. J Perinatol 28:56–60CrossRefGoogle Scholar
  16. 16.
    Stevens BJ, Riddell RR, Oberlander TE et al (2007) Assessment of pain in neonates and infants. In: Anand KJ, Stevens BJ, McGrath PJ (eds) Pain in neonates and infants. Pain research and clinical management series, 3rd edn. Elsevier, Edinburgh, pp 67–90Google Scholar
  17. 17.
    Edwards AD, Arthurs OJ (2011) Paediatric MRI under sedation: is it necessary? What is the evidence for the alternatives? Pediatr Radiol 41:1353–1364PubMedCrossRefGoogle Scholar
  18. 18.
    Saunders DE, Thompson C, Gunny R et al (2007) Magnetic resonance imaging protocols for paediatric neuroradiology. Pediatr Radiol 37:789–797PubMedCrossRefGoogle Scholar
  19. 19.
    Sury MRJ, Harker H, Begent J et al (2005) The management of infants and children for painless imaging. Clin Radiol 60:731–741PubMedCrossRefGoogle Scholar
  20. 20.
    Mathur AM, Neil JJ, McKinstry RC et al (2008) Transport, monitoring, and successful brain MR imaging in unsedated neonates. Pediatr Radiol 38:260–264PubMedCrossRefGoogle Scholar
  21. 21.
    Nordahl CW, Simon TJ, Zierhut C et al (2008) Brief reports: Methods for acquiring structural MRI data in very young children with autism without the use of sedation. J Autism Dev Disord 38:1581–1590PubMedCrossRefGoogle Scholar
  22. 22.
    Stevens B, Taddio A, Ohlsson A et al (1997) The efficacy of sucrose for relieving procedural pain in neonates—a systematic review and meta-analysis. Acta Paediatr 86:837–842PubMedCrossRefGoogle Scholar
  23. 23.
    Stevens B, Yamada J, Ohlsson A (2010) Sucrose for analgesia in newborn infants undergoing painful procedures. Cochrane Database Syst Rev 1:CD001069PubMedGoogle Scholar
  24. 24.
    Harrison D, Stevens B, Bueno M et al (2010) Efficacy of sweet solutions for analgesia in infants between 1 and 12 months of age: a systematic review. Arch Dis Child 95:406–413PubMedCrossRefGoogle Scholar
  25. 25.
    Carbajal R, Chauvet X, Couderc S et al (1999) Randomised trial of analgesic effects of sucrose, glucose, and pacifiers in term neonates. BMJ 319:1393–1397PubMedCrossRefGoogle Scholar
  26. 26.
    Curtis SJ, Jou H, Ali S et al (2007) A randomized controlled trial of sucrose and/or pacifiers as analgesia for infants receiving venipuncture in a pediatric emergency department. BMC Pediatr 7:27. doi: 10:1186/1471-2431-7-27 PubMedCrossRefGoogle Scholar
  27. 27.
    Blass EM, Watt LB (1999) Sucking- and sucrose-induced analgesia in human newborns. Pain 83:611–623PubMedCrossRefGoogle Scholar
  28. 28.
    Windram J, Grosse-Wortmann L, Shariat M et al (2012) Cardiovascular MRI without sedation or general anesthesia using a feed-and-sleep technique in neonates and infants. Pediatr Radiol 42:183-187Google Scholar
  29. 29.
    Fearon I, Kisilevsky BS, Mains SMJ et al (1997) Swaddling after heel lance: Age-specific effects on behavioural recovery in preterm infants. J Dev Behav Pediatr 18:222–232PubMedCrossRefGoogle Scholar
  30. 30.
    Huang CM, Tung WS, Kuo LL et al (2004) Comparison of pain responses of premature infants to the heelstick between containment and swaddling. J Nurs Res 12:31–40PubMedCrossRefGoogle Scholar
  31. 31.
    van Sleuwen BE, L’hoir MP, Engelberts AC et al (2006) Comparison of behaviour modification with and without swaddling as interventions for excessive crying. J Pediatr e2:512–517Google Scholar
  32. 32.
    Franco P, Seret N, van Hees JN et al (2005) Influence of swaddling on sleep and arousal characteristics of healthy infants. Pediatrics 115:1307–1311PubMedCrossRefGoogle Scholar
  33. 33.
    Hansen SS (2009) Feed-and-sleep: a non-invasive and safe alternative to general anaesthesia when imaging very young children. Radiographer 56:5–8Google Scholar
  34. 34.
    Kuperman JM, Brown TT, Ahmadi ME et al (2011) Prospective motion correction improves diagnostic utility of pediatric MRI scans. Pediatr Radiol 41:1578–1582PubMedCrossRefGoogle Scholar
  35. 35.
    Philbin MK, Taber KH, Hayman LA (1996) Preliminary report: changes in vital signs of term newborns during MRI. AJNR 17:1033–1036PubMedGoogle Scholar
  36. 36.
    Taber KH, Hayman LA, Northrup SR et al (1998) Vital sign changes during infant magnetic resonance examinations. J Magr Reson Imaging 8:1252–1256CrossRefGoogle Scholar
  37. 37.
    Battin M, Maalouf EF, Counsell S et al (1998) Physiological stability of preterm infants during magnetic resonance imaging. Early Human Development 52:101–110PubMedCrossRefGoogle Scholar
  38. 38.
    Gray L, Philbin MK (2004) Effects of the neonatal intensive care unit on auditory attention and distraction. Clin Perinatol 31:243–260PubMedCrossRefGoogle Scholar
  39. 39.
    Waldron S, MacKinnon R (2007) Neonatal thermoregulation. Infant 3:101–104Google Scholar
  40. 40.
    Hammarlund K, Sedin G, Stromberg B (1982) Transepidermal water loss in newborn infants. VII. Relation to post-natal age in very pre-term and full-term appropriate for gestational age infants. Acta Paediatr Scand 71:369–374PubMedCrossRefGoogle Scholar
  41. 41.
    Knobel R, Holditch-Davis D (2007) Thermoregulation and heat loss prevention after birth and during neonatal intensive-care unit stabilization of extremely low-birthweight infants. J Obstet Gynecol Neonatal Nurs 36:280–287PubMedCrossRefGoogle Scholar
  42. 42.
    Menon G (2003) Neonatal long lines. Arch Dis Child Fetal Neonatal Ed 88:F260–F262. doi: 10.1136/fn.88.4.F260 PubMedCrossRefGoogle Scholar
  43. 43.
    Stokowski LA (2005) Ensuring safety for infants undergoing Magnetic Resonance Imaging. Adv Neonat Care 5:14–27CrossRefGoogle Scholar
  44. 44.
    Shellock FG (2002) Magnetic Resonance Safety Update (2002): implants and devices. J Magn Reson Imaging 16:485–496PubMedCrossRefGoogle Scholar
  45. 45.
    Shellock FG, Crues JV III (2002) MR safety and the American College of Radiology White Paper. AJR 178:1349–1352PubMedGoogle Scholar
  46. 46.
    Kanal E, Borgstede JP, Barkovich AJ et al (2002) American College of Radiology White Paper on MRI Safety. AJR 178:1335–1347PubMedGoogle Scholar
  47. 47.
    Lorenz BL (1990) Are you using the right IV pump. RN 53:31–36PubMedGoogle Scholar
  48. 48.
    Cowan T (1997) Intravenous infusion pumps for hospital use. Prof Nurse 12:449–457PubMedGoogle Scholar
  49. 49.
    Laswad T, Wintermark P, Alamo L et al (2009) Method for performing cerebral perfusion-weighted MRI in neonates. Pediatr Radiol 39(3):260–264PubMedCrossRefGoogle Scholar
  50. 50.
    Nicholas JG, Geers AE (2007) Will they catch up? The role of age at cochlear implantation in the spoken language development of children with severe profound hearing loss. J Speech Lang Hear Res 50:1048–1062PubMedCrossRefGoogle Scholar
  51. 51.
    Dubrulle F, Vincent C, Varoquaux A et al (2011) [Guidelines for the performance of MRI in patients with cochlear implants]. J Radiol 92:872–877PubMedCrossRefGoogle Scholar
  52. 52.
    Food and Drug Administration (2002) Patient death illustrates importance of MRI room precautions [online] accessed January 2011. Available at http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/psn/transcript.cfm?show=1
  53. 53.
    McJury M, Shellock FG (2000) Auditory noise associated with MR procedures: a review. J Magn Reson Imaging 12:37–45PubMedCrossRefGoogle Scholar
  54. 54.
    More SR, Lim TC, Li M et al (2006) Acoustic noise characteristics of a 4 telsa MRI scanner. J Mag Reson Imag 23:388–397CrossRefGoogle Scholar
  55. 55.
    Price DL, De Wilde JP, Papadaki AM et al (2001) Investigation of acoustic noise on 15 MRI scanners from 0.2 T to 3 T. J Mag Reson Imag 13:288–293CrossRefGoogle Scholar
  56. 56.
    American Academy of Pediatrics (1995) Joint committee on infant hearing 1994 Position Statement. Pediatrics 95:152–156Google Scholar
  57. 57.
    Reeves MJ, Brandreth M, Whitby EH et al (2010) Neonatal cochlear function: measurement after exposure to acoustic noise during in utero MR imaging. Radiol 257:809–809CrossRefGoogle Scholar
  58. 58.
    Glover P, Hykin J, Gowland P et al (1995) An assessment of the intrauterine sound intensity level during obstetric echo-planar magnetic resonance imaging. Br J Radiol 68:1090–1094PubMedCrossRefGoogle Scholar
  59. 59.
    European Agency for Safety and Health at Work (2005) Stop That Noise! Information pack [online]. Available at www.osha.europa.eu/en/Campaigns/ew2005/pressroom
  60. 60.
    MHRA (2007) Safety guidelines for magnetic resonance imaging equipment in clinical use. MHRA DB2007(03) December 2007 ISBN 978 1 900731622Google Scholar
  61. 61.
    Radomskij P, Schmidt MA, Heron CW et al (2002) Effect of MRI noise on cochlear function. Lancet 359:1485–1486PubMedCrossRefGoogle Scholar
  62. 62.
    Health and Safety Executive (2010) Exposure calculators and ready-reckoners [online]. http://www.hse.gov.uk/noise/calculator.htm
  63. 63.
    Kotarbinska E (2005) The influence of aging on the noise attenuation of ear-muffs. Noise Health 7:39–45PubMedCrossRefGoogle Scholar
  64. 64.
    Nordell A, Lundh M, Horsch S et al (2009) The acoustic hood: a patient-independent device improving acoustic noise protection during neonatal magnetic imaging. Acta Paediatr 98:1278–1283PubMedCrossRefGoogle Scholar
  65. 65.
    Health and Safety Executive (2005) The control of noise at work regulations [online]. http://www.hse.gov.uk/noise/regulations.htm
  66. 66.
    Health Protection Agency (2008) Protection of patients and volunteers undergoing MRI procedures. Health Protection Agency, OxfordGoogle Scholar
  67. 67.
    Mechefske CK, Geris R, Gati JS et al (2001) Acoustic noise reduction in a 4 T MRI scanner. MAGMA 13:172–176CrossRefGoogle Scholar
  68. 68.
    Edelstein WA, Hedeen RA, Mallozzi RP et al (2001) Making MRI quieter. Magn Reson Imaging 20:155–163CrossRefGoogle Scholar
  69. 69.
    Katsunuma A, Takamori H, Sakakura Y et al (2002) Quiet MRI with novel acoustic noise reduction. MAGMA 13:139–144PubMedCrossRefGoogle Scholar
  70. 70.
    McJury M, Stewart RW, Crawford D et al (1997) The use of active noise control (ANC) to reduce acoustic noise generated during MRI scanning: some initial results. Magn Reson Imaging 15:319–322PubMedCrossRefGoogle Scholar
  71. 71.
    Bourland JD, Nyenhuis JA, Schaefer DJ (1999) Physiologic effects of intense MRI gradient fields. Neuroimaging Clin North Am 9:363–377Google Scholar
  72. 72.
    Food and Drug Administration (1988) Guidance for the submission of premarket notifications for magnetic resonance diagnostic devices. http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm073817.htm
  73. 73.
    Commission IE (2002) International standard, medical equipment—part 2: particular requirements for the safety of magnetic resonance equipment for medical diagnosis. 2nd revision. Geneva: International Electrotechnical Commission 601:2–33Google Scholar
  74. 74.
    Shellock F, Sawyer-Glover A (2001) The magnetic resonance environment and implants, devices and materials. In: Shellock F (ed) Magnetic resonance procedures: health effects and safety. CRC Press, Boca RatonGoogle Scholar
  75. 75.
    Wang Z, Lin JC, Weihua M et al (2007) SAR and temperature: simulations and comparison to regulatory limits for MRI. J Magn Reson Imaging 26:437–441PubMedCrossRefGoogle Scholar
  76. 76.
    Kussman BD, Mulkern RV, Holzman RS (2004) Iatrogenic Hyperthermia during cardiac magnetic resonance imaging. Anaesth Analg 99:1053–1055CrossRefGoogle Scholar
  77. 77.
    Bryan YF, Templeton TW, Nick TG et al (2006) Brain magnetic resonance imaging increases core body temperature in sedated children. Anaesth Analg 102:1674–1679CrossRefGoogle Scholar
  78. 78.
    Machata A-M, Willshke H, Kabon B et al (2009) Effect of brain magnetic resonance imaging on body core temperature in sedated infants and children. Br J Anaesth 102:385–389PubMedCrossRefGoogle Scholar
  79. 79.
    Isaacson DL, Yanosky DJ, Jones RA et al (2011) Effect of MRI strength and propofol sedation on pediatric core temperature change. J Magn Reson Imaging 33:950–956PubMedCrossRefGoogle Scholar
  80. 80.
    Dagia C, Ditchfield M (2008) 3T MRI in paediatrics: challenges and clinical applications. Eur J Radiol 68:309–319PubMedCrossRefGoogle Scholar
  81. 81.
    Blamire AM (2008) The technology of MRI—the next 10 years? Br J Radiol 81:601–617PubMedCrossRefGoogle Scholar
  82. 82.
    Helle M, Jerosch-Herold M, Voges I et al (2011) Improved MRI of the neonatal heart: feasibility study using a knee coil. Pediatr Radiol 41:1429–1432PubMedCrossRefGoogle Scholar
  83. 83.
    Vasanawala SS, Grafendorfer T, Calderon P et al (2011) Millimeter isotropic resolution volumetric pediatric abdominal MRI with a dedicated 32-channel phased array coil. Proceedings of the 19th Scientific Meeting of ISMRM, Montreal, p. 161Google Scholar
  84. 84.
    Conklin J, Winter JD, Thompson RT et al (2008) High-contrast 3D neonatal brain imaging with combined T1- and T2-weighted MP-RAGE. Magn Reson Med 59:1190–1196PubMedCrossRefGoogle Scholar
  85. 85.
    Dias SC, Olsen OE (2012) Isotropic 3-D T2-weighted spin-echo for abdominal and pelvic MRI in children. Pediatr Radiol P-RAD-11-00623. doi: 10.1007/s00247-012-2395-1
  86. 86.
    Liauw L, van der Grond J, van den Berg-Huysmans AA et al (2008) Hypoxic-ischemic encephalopathy: diagnostic value of conventional MR imaging pulse sequences in term-born neonates. Radiology 247:204–212PubMedCrossRefGoogle Scholar
  87. 87.
    Humphries PD, Sebire NJ, Siegel MJ et al (2007) Tumors in pediatric patients at diffusion-weighted MR imaging: apparent diffusion coefficient and tumor cellularity. Radiol 245:848–854CrossRefGoogle Scholar
  88. 88.
    Conturo TE, McKinstry RC, Aronovitz JA et al (1995) Diffusion MRI: precision, accuracy and flow effects. NMR Biomed 8:307–332PubMedCrossRefGoogle Scholar
  89. 89.
    Alderliesten T, de Vries LS, Benders MJ et al (2011) MR imaging and outcome of term neonates with perinatal asphyxia: value of diffusion-weighted MR imaging and ¹H MR spectroscopy. Radiology 261:235–242PubMedCrossRefGoogle Scholar
  90. 90.
    Mayr M, Burkhalter F, Bongartz G (2009) Nephrogenic systemic fibrosis: clinical spectrum of disease. J Magn Reson Imaging 30:1289–1297PubMedCrossRefGoogle Scholar
  91. 91.
    Prince MR, Zhang HL, Prowda JC et al (2009) Nephrogenic systemic fibrosis and its impact on abdominal imaging. Radiographics 29:1565–1574PubMedCrossRefGoogle Scholar
  92. 92.
    Mendichovszky IA, Marks SD, Simcock CM et al (2008) Gadolinium and nephrogenic systemic fibrosis: time to tighten practice. Pediatr Radiol 38:489–496, quiz 602-603PubMedCrossRefGoogle Scholar
  93. 93.
    Karcaaltincaba M, Oguz B, Haliloglu M (2009) Current status of contrast-induced nephropathy and nephrogenic systemic fibrosis in children. Pediatr Radiol 39(Suppl 3):382–384PubMedCrossRefGoogle Scholar
  94. 94.
    Drug Safety Update (2010) Gadolinium-containing contrast agents: new advice to minimise the risk of nephrogenic systemic fibrosis. Medicines and Healthcare products Regulatory Agency (MHRA). 3:3–5 http://www.mhra.gov.uk/Safetyinformation/DrugSafetyUpdate/CON087741
  95. 95.
    Emond S, Brunelle F (2011) Gd-DOTA administration at MRI in children younger than 18 months of age: immediate adverse reactions. Pediatr Radiol 41:1401–1406PubMedCrossRefGoogle Scholar
  96. 96.
    Thomsen HS, Marckmann P, Logager VB (2007) Nephrogenic systemic fibrosis (NSF): a late adverse reaction to some of the gadolinium based contrast agents. Cancer Imaging 24:130–137CrossRefGoogle Scholar
  97. 97.
    Huisman TA, Sorensen AG (2004) Perfusion-weighted magnetic resonance imaging of the brain: techniques and application in children. Eur Radiol 14:59–72PubMedCrossRefGoogle Scholar
  98. 98.
    Pollock JM, Whitlow CT, Deibler AR et al (2008) Anoxic injury-associated cerebral hyperperfusion identified with arterial spin-labeled MR imaging. AJNR 29:1302–1307PubMedCrossRefGoogle Scholar
  99. 99.
    Wintermark P, Hansen A, Gregas MC et al (2011) Brain perfusion in asphyxiated newborns treated with therapeutic hypothermia. AJNR 32:2023–2029PubMedCrossRefGoogle Scholar
  100. 100.
    Chen J, Licht DJ, Smith SE et al (2009) Arterial spin labeling perfusion MRI in pediatric arterial ischemic stroke: initial experiences. J Magn Reson Imaging 29:282–290PubMedCrossRefGoogle Scholar
  101. 101.
    Blüml S, Friedlich P, Erberich S et al (2004) MR imaging of newborns by using an MR-compatible incubator with integrated radiofrequency coils: Initial experience. Radiology 231:594–601PubMedCrossRefGoogle Scholar
  102. 102.
    Whitby EH, Griffiths PD, Lonneker-Lammers T et al (2004) Ultrafast magnetic resonance imaging of the neonate in a magnetic resonance-compatible incubator with a built-in coil. Pediatrics 113:e150–e152PubMedCrossRefGoogle Scholar
  103. 103.
    Saunders AN (1995) Incubator noise: a method to decrease decibels. Pediatr Nurs 21:265–268PubMedGoogle Scholar
  104. 104.
    Byers JF, Waugh WR, Lowman LB (2006) Sound level exposure of high-risk infants in different environmental conditions. Neonatal Netw 25:25–32PubMedCrossRefGoogle Scholar
  105. 105.
    Darcy AE, Hancock LE, Ware EJ (2008) A descriptive study of noise in the neonatal intensive care unit. Adv Neonatal Care 8:S16–S26PubMedGoogle Scholar
  106. 106.
    Philbin MK, Gray L (2002) Changing levels of quiet in an intensive care nursery. J Perinatol 22:455–460PubMedCrossRefGoogle Scholar
  107. 107.
    Johnson AN (2001) Neonatal response to control of noise inside the incubator. Pediatr Nurs 27:600–605PubMedGoogle Scholar
  108. 108.
    O'Regan K, Filan P, Pandit N et al (2012) Image quality associated with the use of an MR-compatible incubator in neonatal neuroimaging. Br J Radiol 85:363–367PubMedCrossRefGoogle Scholar
  109. 109.
    Benavente-Fernádez I, Lubián-López PS, Zuazo-Ojeda MA et al (2010) Safety of magnetic resonance imaging in preterm infants. Acta Paediatr 99:850–853CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Owen J. Arthurs
    • 1
    Email author
  • Andrea Edwards
    • 1
    • 2
  • Topun Austin
    • 2
  • Martin J. Graves
    • 1
  • David J. Lomas
    • 1
  1. 1.Department of RadiologyAddenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation TrustCambridgeUK
  2. 2.Department of NeonatologyAddenbrooke’s HospitalCambridgeUK

Personalised recommendations