Pediatric Radiology

, Volume 42, Issue 9, pp 1112–1118 | Cite as

Digital radiography: optimization of image quality and dose using multi-frequency software

  • H. Precht
  • O. Gerke
  • K. Rosendahl
  • A. Tingberg
  • D. Waaler
Original Article

Abstract

Background

New developments in processing of digital radiographs (DR), including multi-frequency processing (MFP), allow optimization of image quality and radiation dose. This is particularly promising in children as they are believed to be more sensitive to ionizing radiation than adults.

Objective

To examine whether the use of MFP software reduces the radiation dose without compromising quality at DR of the femur in 5-year-old-equivalent anthropomorphic and technical phantoms.

Materials and methods

A total of 110 images of an anthropomorphic phantom were imaged on a DR system (Canon DR with CXDI-50 C detector and MLT[S] software) and analyzed by three pediatric radiologists using Visual Grading Analysis. In addition, 3,500 images taken of a technical contrast-detail phantom (CDRAD 2.0) provide an objective image-quality assessment.

Results

Optimal image-quality was maintained at a dose reduction of 61% with MLT(S) optimized images. Even for images of diagnostic quality, MLT(S) provided a dose reduction of 88% as compared to the reference image. Software impact on image quality was found significant for dose (mAs), dynamic range dark region and frequency band.

Conclusion

By optimizing image processing parameters, a significant dose reduction is possible without significant loss of image quality.

Keywords

Digital radiography Software optimization Multi-frequency processing Dose reduction 

References

  1. 1.
    ICRP (2004) Managing patient dose in digital radiology. ICRP Publication 93. Ann. ICRP 34:1–73Google Scholar
  2. 2.
    Reiner BI, Siegel EL, Siddiqui K et al (2006) Quality assurance: the missing link. Radiology 238:13–16PubMedCrossRefGoogle Scholar
  3. 3.
    Seeram E (2011) Digital radiography, an introduction. Delmar Cengage Learning, New YorkGoogle Scholar
  4. 4.
    Gonzales RC, Woods RE (2008) Digital image processing. Prentice Hall (3), New JerseyGoogle Scholar
  5. 5.
    Canon Inc. (2008) CXDI Image Processing Software MLT(S) User’s Manual. JapanGoogle Scholar
  6. 6.
    Beutel J, Sonka M, Fitzpatrick JM (2004) Handbook of medical imaging, vol. 2; Medical image processing and analysis. SPIE, WashingtonGoogle Scholar
  7. 7.
    Bushberg JT, Seibert JA, Leidholdt EM et al (2002) The essential physics of medical imaging. Lippincott Williams & Wilkins (2), PhiladelphiaGoogle Scholar
  8. 8.
    Hart D, Wall BF, Shrimpton PC et al (2000) Reference doses and patient size in pediatric radiology. http://www.hpa.org.uk/web/HPAweb&HPAwebStandard/HPAweb_C/1195733786824
  9. 9.
    Huda W (2004) Assessment of the problem: pediatric doses in screen-film and digital radiography. Pediatr Radiol 34(3):S173–S182PubMedCrossRefGoogle Scholar
  10. 10.
    European Commission (1996) European guidelines on quality criteria for diagnostic radiographic images in pediatrics. LuxemborgGoogle Scholar
  11. 11.
    Danish Society of Radiology (2006) Vejledning vedrørende Radiologiske ProcedureGoogle Scholar
  12. 12.
    Rapp-Bernhardt U, Bernhardt T, Lenzen H et al (2005) Experimental evaluation of a portable indirect flat-panel detector for the pediatric chest: comparison with storage phosphor radiography at different exposures by using a chest phantom. Radiology 237:485–491PubMedCrossRefGoogle Scholar
  13. 13.
    Ludwig K, Ahlers K, Wormanns D et al (2005) Lumbar spine radiography: digital flat-panel detector versus screen-film and storage-phosphor systems in monkeys as a pediatric model. Radiology 229:140–154CrossRefGoogle Scholar
  14. 14.
    Hansson H, Båth M, Håkansson M et al (2005) An optimization strategy in a digital environment applied to neonatal chest imaging. Radiat Protect Dosim 114:278–285CrossRefGoogle Scholar
  15. 15.
    Uffmann M, Schaefer-Prokop C, Neitzel U et al (2005) Skeletal applications for flat-panel versus storage-phosphor radiography: effect of exposure on detection of low-contrast details. Radiology 231:506–514CrossRefGoogle Scholar
  16. 16.
    Artinis (2006) Manual—contrast-detail phantom. Artinis CDRAD type 2.0, ZettenGoogle Scholar
  17. 17.
    International Commission on Radiation units and Measurements (1989) Tissue substitutes in radiation dosimetry and measurement. ICRU Report 44, MarylandGoogle Scholar
  18. 18.
    National Board of Health (2006) Pediatric radiation doses at Radiology. Published at webpage: http://www.sst.dk/publ/Publ2006/SIS/Boernedoser/Boernedoser_radiologi.pdf assessed the 17 October 2011
  19. 19.
    Tingberg A, Sjöström D (2005) Optimisation of image plate radiography with respect to tube voltage. Radiat Protect Dosim 114:1–3CrossRefGoogle Scholar
  20. 20.
    Almén A, Tingberg A, Mattsson S et al (2000) The influence of different technique factors on image quality of lumbar spine radiographs as evaluated by established CEC image criteria. Br J Radiol 73:1192–1199PubMedGoogle Scholar
  21. 21.
    Sund P, Båth M, Kheddache S et al (2004) Comparison of visual grading analysis and determination of detective quantum efficiency for evaluating system performance in digital chest radiography. Eur Radiol 14(1):143–150Google Scholar
  22. 22.
    Månsson LG (2000) Methods for the evaluation of image quality: a review. Radiat Protect Dosim 90:89–99CrossRefGoogle Scholar
  23. 23.
    Bontrager KL (2002) Textbook of radiographic positioning and related anatomi. Bontrager Publishing (4), ArizonaGoogle Scholar
  24. 24.
    Lanhede B, Båth M, Kherddache S et al (2002) The influence of different technique factors on image quality of chest radiographs as evaluated by modified CEC image quality criteria. Br J Radiol 75:38–49PubMedGoogle Scholar
  25. 25.
    Brennan PC, Johnston D (2002) Irish X-ray departments demonstrate varying levels of adherence to European guidelines on good radiographic technique. Br J Radiol 75:243–248PubMedGoogle Scholar
  26. 26.
    Rainford LA, Al-Qattan E, McFadden S et al (2006) CEC analysis of radiological images produced in Europe and Asia. Radiography 13:202–209CrossRefGoogle Scholar
  27. 27.
    Larsen ALS (2006) Videnskab og forskning: en lærebog for professionsuddannelser. Gads Forlag (2):145Google Scholar
  28. 28.
    Polit DF, Beck CT (2008) Nursing research generating and assessing evidence for nurcing practice. Lippincott Williams & Wilkins (8), PhiladelphiaGoogle Scholar
  29. 29.
    Norrman E (2007) Optimisation of radiographic imaging by means of factorial experiments. Doctoral Dissertation, University of Örebro, SwedenGoogle Scholar
  30. 30.
    Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychol Bull 76:378–382CrossRefGoogle Scholar
  31. 31.
    Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7:1–26CrossRefGoogle Scholar
  32. 32.
    Miller DP (2004) Obtain robust confidence intervals for any statistic. SAS Institute Inc. Proceedings of the Twenty-Ninth Annual SAS (R) User Group International Conference. SAS Institute Inc, North CarolinaGoogle Scholar
  33. 33.
    Canon Inc. (2008) Multiobjective frequency processing function manual—MLT(S) edition. JapanGoogle Scholar
  34. 34.
    Beutel J, Kundel HL, Van Metter RL (2000) Handbook of medical imaging, vol. 1; Physics and Psychophysics. SPIE, WashingtonGoogle Scholar
  35. 35.
    Crevret S (2006) Statistical methods for dose-finding experiments. Wiley, EnglandCrossRefGoogle Scholar
  36. 36.
    Eubank RL (1999) Nonparametric regression and spline smoothing. CRC press, New YorkGoogle Scholar
  37. 37.
    Härdle WK, Müller M, Sperlich S et al (2004) Nonparametric and semiparametric models. Springer, BerlinCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • H. Precht
    • 1
  • O. Gerke
    • 2
    • 3
  • K. Rosendahl
    • 4
    • 5
  • A. Tingberg
    • 6
  • D. Waaler
    • 7
  1. 1.Conrad Research CenterUniversity College LillebeltOdense SØDenmark
  2. 2.Department of Nuclear MedicineOdense University HospitalOdense CDenmark
  3. 3.Research Unit of Health EconomicsUniversity of Southern DenmarkOdense CDenmark
  4. 4.Section of Pediatric RadiologyHaukeland University HospitalBergenNorway
  5. 5.Institute of Surgical SciencesUniversity of BergenBergenNorway
  6. 6.Medical Radiation Physics, Department of Clinical Sciences, Malmö, Lund UniversitySkåne University HospitalMalmöSweden
  7. 7.Gjøvik University CollegeGjøvikNorway

Personalised recommendations