Advertisement

Imaging of congenital coronary artery anomalies

Abstract

Imaging of the coronary arteries is an important part of the evaluation of children with congenital heart disease and isolated congenital coronary artery anomalies. Echocardiography remains the main imaging modality and is complemented by MRI and CT angiography in the older or difficult-to-image child. We review echocardiography, MRI, and CT angiography for coronary artery imaging, with emphasis on techniques. The clinical implications of isolated congenital coronary artery anomalies are also addressed, along with a discussion about the current consensus on optimal management of these anomalies.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Koifman B, Egdell R, Somerville J (2001) Prevalence of asymptomatic coronary arterial abnormalities detected by angiography in grown-up patients with congenital heart disease. Cardiol Young 11:614–618

  2. 2.

    Alexander RW, Griffith GC (1956) Anomalies of the coronary arteries and their clinical significance. Circulation 14:800–805

  3. 3.

    Frescura C, Basso C, Thiene G et al (1998) Anomalous origin of coronary arteries and risk of sudden death: a study based on an autopsy population of congenital heart disease. Hum Pathol 29:689–695

  4. 4.

    Lipsett J, Cohle SD, Berry PJ et al (1994) Anomalous coronary arteries: a multicenter pediatric autopsy study. Pediatr Pathol 14:287–300

  5. 5.

    Angelini P, Villason S, Chan AV et al (1999) Normal and anomalous coronary arteries in humans. Lippincott Williams & Wilkins, Philadelphia, pp 27–50

  6. 6.

    Lytrivi ID, Wong AH, Ko HH et al (2008) Echocardiographic diagnosis of clinically silent congenital coronary artery anomalies. Int J Cardiol 126:386–393

  7. 7.

    Pasquini L, Sanders SP, Parness IA et al (1994) Coronary echocardiography in 406 patients with d-loop transposition of the great arteries. J Am Coll Cardiol 24:763–768

  8. 8.

    Pasquini L, Sanders SP, Parness IA et al (1987) Diagnosis of coronary artery anatomy by two-dimensional echocardiography in patients with transposition of the great arteries. Circulation 75:557–564

  9. 9.

    Beerbaum P, Sarikouch S, Laser KT et al (2009) Coronary anomalies assessed by whole-heart isotropic 3D magnetic resonance imaging for cardiac morphology in congenital heart disease. J Magn Reson Imaging 29:320–327

  10. 10.

    Seeger A, Fenchel MC, Greil GF et al (2009) Three-dimensional cine MRI in free-breathing infants and children with congenital heart disease. Pediatr Radiol 39:1333–1342

  11. 11.

    Su JT, Chung T, Muthupillai R et al (2005) Usefulness of real-time navigator magnetic resonance imaging for evaluating coronary artery origins in pediatric patients. Am J Cardiol 95:679–682

  12. 12.

    Frush DP, Donnelly LF (1998) Helical CT in children: technical considerations and body applications. Radiology 209:37–48

  13. 13.

    Brenner D, Elliston C, Hall E et al (2001) Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 176:289–296

  14. 14.

    Strauss KJ, Goske MJ, Kaste SC et al (2010) Image gently: ten steps you can take to optimize image quality and lower CT dose for pediatric patients. AJR Am J Roentgenol 194:868–873

  15. 15.

    Taylor AJ, Cerqueira M, Hodgson JM et al (2010) ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 Appropriate Use Criteria for Cardiac Computed Tomography: A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. Circulation 122:e525–e555

  16. 16.

    Kim SY, Seo JB, Do KH et al (2006) Coronary artery anomalies: classification and ECG-gated multi-detector row CT findings with angiographic correlation. Radiographics 26:317–333, discussion 333–4

  17. 17.

    Manghat NE, Morgan-Hughes GJ, Marshall AJ et al (2005) Multidetector row computed tomography: imaging congenital coronary artery anomalies in adults. Heart 91:1515–1522

  18. 18.

    Fan XM, Yan J, Liu YL et al (2010) Influence of coronary artery variation on the outcome of arterial switch operation (in Chinese). Zhonghua Yi Xue Za Zhi 90:2062–2064

  19. 19.

    Gottlieb D, Schwartz ML, Bischoff K et al (2008) Predictors of outcome of arterial switch operation for complex D-transposition. Ann Thorac Surg 85:1698–702, discussion 1702–3

  20. 20.

    Nishino T, Harada Y (2008) Results of arterial switch operation for transposition of great arteries with regard to coronary pattern (in Japanese). Kyobu Geka 61:282–286

  21. 21.

    Barth CW 3rd, Roberts WC (1986) Left main coronary artery originating from the right sinus of Valsalva and coursing between the aorta and pulmonary trunk. J Am Coll Cardiol 7:366–373

  22. 22.

    Taylor AJ, Rogan KM, Virmani R (1992) Sudden cardiac death associated with isolated congenital coronary artery anomalies. J Am Coll Cardiol 20:640–647

  23. 23.

    Kragel AH, Roberts WC (1988) Anomalous origin of either the right or left main coronary artery from the aorta with subsequent coursing between aorta and pulmonary trunk: analysis of 32 necropsy cases. Am J Cardiol 62:771–777

  24. 24.

    Steinberger J, Lucas RV Jr, Edwards JE et al (1996) Causes of sudden unexpected cardiac death in the first two decades of life. Am J Cardiol 77:992–995

  25. 25.

    Wernovsky G (2008) Transposition of the great arteries. Lippincott Williams & Wilkins, Philadelphia, pp 1038–1087

  26. 26.

    Li J, Tulloh RM, Cook A et al (2000) Coronary arterial origins in transposition of the great arteries: factors that affect outcome. A morphological and clinical study. Heart 83:320–325

  27. 27.

    Berry JM Jr, Einzig S, Krabill KA et al (1988) Evaluation of coronary artery anatomy in patients with tetralogy of Fallot by two-dimensional echocardiography. Circulation 78:149–156

  28. 28.

    Jureidini SB, Appleton RS, Nouri S (1989) Detection of coronary artery abnormalities in tetralogy of Fallot by two-dimensional echocardiography. J Am Coll Cardiol 14:960–967

  29. 29.

    Fellows KE, Freed MD, Keane JF et al (1975) Results of routine preoperative coronary angiography in tetralogy of Fallot. Circulation 51:561–566

  30. 30.

    Gordillo L, Faye-Petersen O, de la Cruz MV et al (1993) Coronary arterial patterns in double-outlet right ventricle. Am J Cardiol 71:1108–1110

  31. 31.

    Van Praagh R, Van Praagh S (1965) The anatomy of common aorticopulmonary trunk (truncus arteriosus communis) and its embryologic implications. A study of 57 necropsy cases. Am J Cardiol 16:406–425

  32. 32.

    Nykanen DG (2008) Pulmonary atresia and intact ventricular septum. Lippincott Williams & Wilkins, Philadephia, pp 860–878

  33. 33.

    Mawson JB (2002) Congenital heart defects and coronary anatomy. Tex Heart Inst J 29:279–289

  34. 34.

    Karr SS, Parness IA, Spevak PJ et al (1992) Diagnosis of anomalous left coronary artery by Doppler color flow mapping: distinction from other causes of dilated cardiomyopathy. J Am Coll Cardiol 19:1271–1275

  35. 35.

    Frommelt PC, Frommelt MA (2004) Congenital coronary artery anomalies. Pediatr Clin North Am 51:1273–1288

  36. 36.

    Gersony WM (2007) Management of anomalous coronary artery from the contralateral coronary sinus. J Am Coll Cardiol 50:2083–2084

  37. 37.

    Chaitman BR, Lesperance J, Saltiel J et al (1976) Clinical, angiographic, and hemodynamic findings in patients with anomalous origin of the coronary arteries. Circulation 53:122–131

  38. 38.

    Murphy DA, Roy DL, Sohal M et al (1978) Anomalous origin of left main cononary artery from anterior sinus of Valsalva with myocardial infarction. J Thorac Cardiovasc Surg 75:282–285

  39. 39.

    Gaudino M, Glieca F, Bruno P et al (1997) Unusual right coronary artery anomaly with major implication during cardiac operations. Ann Thorac Surg 64:838–839

  40. 40.

    Ogino H, Miki S, Ueda Y et al (1999) High origin of the right coronary artery with congenital heart disease. Ann Thorac Surg 67:558–559

  41. 41.

    Utoh J, Goto H (1996) Anomalous origin of the right coronary artery as a risk factor in aortic valve surgery. Ann Thorac Surg 62:1886–1887

Download references

Acknowledgements

The authors would like to acknowledge Zhanna Roytman and Komal Srivastava in regards to the preparation of the images in the manuscript.

Author information

Correspondence to Rowan Walsh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Three dimensional CT angiography of normal proximal coronary origins is utilized to demonstrate the imaging planes for standard echocardiographic views. CT dataset is rotated and aligned into a view from the left ventricular apex. This vantage point corresponds to the parasternal short-axis echocardiographic views. Still frame profiling normal origin of the left main coronary artery (LM), left anterior descending (LAD) and circumflex (CX). Note the Doppler color flow mapping superimposed on the 2-D image with normal antegrade flow in the LAD and circumflex. Right coronary artery is profiled from similar plane—again viewed from the left ventricular apex—parasternal short-axis echocardiographic view with color flow mapping demonstrating normal antegrade flow (red) in the right coronary artery (AVI 23266 kb)

(Corresponds to Fig. 2). CT Angiography. Sagittal sweep of the anatomy of an anomalous left main coronary origin with an intraseptal course. Image is moving from the rightward aspect of the aortic root, leftward. The image begins rightward of the coronary origin, profiling the proximal right coronary artery. As the image moves leftward, a single coronary ostium is seen, then the left main coronary artery (white arrow) is visualized arising from the single coronary and courses inferiorly into the conal septum (CS). Note the inferior location relative to the aortic (Ao) and pulmonary (PA) roots. The origin of the circumflex coronary is seen at the end of the movie (MP4 8778 kb)

Movie 1

Three dimensional CT angiography of normal proximal coronary origins is utilized to demonstrate the imaging planes for standard echocardiographic views. CT dataset is rotated and aligned into a view from the left ventricular apex. This vantage point corresponds to the parasternal short-axis echocardiographic views. Still frame profiling normal origin of the left main coronary artery (LM), left anterior descending (LAD) and circumflex (CX). Note the Doppler color flow mapping superimposed on the 2-D image with normal antegrade flow in the LAD and circumflex. Right coronary artery is profiled from similar plane—again viewed from the left ventricular apex—parasternal short-axis echocardiographic view with color flow mapping demonstrating normal antegrade flow (red) in the right coronary artery (AVI 23266 kb)

Movie 2

(Corresponds to Fig. 2). CT Angiography. Sagittal sweep of the anatomy of an anomalous left main coronary origin with an intraseptal course. Image is moving from the rightward aspect of the aortic root, leftward. The image begins rightward of the coronary origin, profiling the proximal right coronary artery. As the image moves leftward, a single coronary ostium is seen, then the left main coronary artery (white arrow) is visualized arising from the single coronary and courses inferiorly into the conal septum (CS). Note the inferior location relative to the aortic (Ao) and pulmonary (PA) roots. The origin of the circumflex coronary is seen at the end of the movie (MP4 8778 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Walsh, R., Nielsen, J.C., Ko, H.H. et al. Imaging of congenital coronary artery anomalies. Pediatr Radiol 41, 1526–1535 (2011) doi:10.1007/s00247-011-2256-3

Download citation

Keywords

  • Coronary artery
  • Echocardiography
  • Congenital heart disease
  • Anomalous origin