Advertisement

Pediatric Radiology

, 41:1455 | Cite as

Medication neurotoxicity in children

  • Ramesh S. IyerEmail author
  • Apeksha Chaturvedi
  • Sumit Pruthi
  • Paritosh C. Khanna
  • Gisele E. Ishak
Pictorial Essay

Abstract

Medication neurotoxicity may have a variety of imaging manifestations in children. In this pictorial essay, we review the two most common brain injury patterns, posterior reversible encephalopathy syndrome (PRES) and acute toxic leukoencephalopathy (ATL). Proposed etiologies, salient features on neurological imaging, and methods for differentiating these entities and their implications will be discussed. Certain agents do not fall into these two broad patterns but instead characteristically involve central structures. We individually review several medications and their respective neurotoxic appearances including methotrexate, cyclosporine A, tacrolimus, metronidazole and vigabatrin. Diagnosis of medication neurotoxicity may be achieved by the combination of new-onset neurological deficits, recent initiation of a new therapy agent and distinctive findings on magnetic resonance imaging. Clinical and radiological improvement and/or resolution are frequently observed after the agent is discontinued.

Keywords

Medication neurotoxicity Posterior reversible leukoencephalopathy syndrome Acute toxic leukoencephalopathy Children 

References

  1. 1.
    Hinchey J, Chaves C, Appignani B et al (1996) A reversible posterior leukoencephalopathy syndrome. N Engl J Med 334:494–500PubMedCrossRefGoogle Scholar
  2. 2.
    Ugurel MS, Hayakawa M (2005) Implications of post-gadolinium MRI results in 13 cases with posterior reversible encephalopathy syndrome. Eur J Radiol 53:441–449PubMedCrossRefGoogle Scholar
  3. 3.
    Hefzy HM, Bartynski WS, Boardman JF et al (2009) Hemorrhage in posterior reversible encephalopathy syndrome: imaging and clinical features. AJNR 30:1371–1379PubMedCrossRefGoogle Scholar
  4. 4.
    Incecik F, Hergüner MO, Altunbasak S et al (2009) Evaluation of nine children with reversible posterior encephalopathy syndrome. Neurol India 57:475–478PubMedCrossRefGoogle Scholar
  5. 5.
    McKinney AM, Short J, Truwit CL et al (2007) Posterior reversible encephalopathy syndrome: incidence of atypical regions of involvement and imaging findings. AJR 189:904–912PubMedCrossRefGoogle Scholar
  6. 6.
    Casey SO, Sampaio RC, Michel E et al (2000) Posterior reversible encephalopathy syndrome: utility of fluid attenuated inversion recovery MR imaging in the detection of cortical and subcortical lesions. AJNR 21:1199–1206PubMedGoogle Scholar
  7. 7.
    Casey SO, Truwit CL (2000) Pontine reversible edema: a newly recognized imaging variant of hypertensive encephalopathy? AJNR 21:243–245PubMedGoogle Scholar
  8. 8.
    Mukherjee P, McKinstry RC (2001) Reversible posterior leukoencephalopathy syndrome: evaluation with diffusion-tensor imaging. Radiology 219:756–765PubMedGoogle Scholar
  9. 9.
    Covarrubias DJ, Luetmer PH, Campeau NG (2002) Posterior reversible encephalopathy syndrome: prognostic utility of quantitative diffusion-weighted MR images. AJNR 23:1038–1048PubMedGoogle Scholar
  10. 10.
    Schwartz RB, Feske SK, Polak JF et al (2000) Preeclampsia-eclampsia: clinical and neuroradiographic correlates and insights into the pathogenesis of hypertensive encephalopathy. Radiology 217:371–376PubMedGoogle Scholar
  11. 11.
    Provenzale JM, Petrella JR, Cruz LC Jr et al (2001) Quantitative assessment of diffusion abnormalities in posterior reversible encephalopathy syndrome. AJNR 22:1455–1461PubMedGoogle Scholar
  12. 12.
    Tamaki K, Sadoshima S, Baumbach GL et al (1984) Evidence that disruption of the blood-brain barrier precedes reduction in cerebral blood flow in hypertensive encephalopathy. Hypertension 6(2 Pt 2):I75–I81PubMedGoogle Scholar
  13. 13.
    Trommer BL, Homer D, Mikhael MA (1988) Cerebral vasospasm and eclampsia. Stroke 19:326–329PubMedCrossRefGoogle Scholar
  14. 14.
    Ito T, Sakai T, Inagawa S et al (1995) MR angiography of cerebral vasospasm in preeclampsia. AJNR 16:1344–1346PubMedGoogle Scholar
  15. 15.
    McKinney AM, Kieffer SA, Paylor RT et al (2009) Acute toxic leukoencephalopathy: potential for reversibility clinically and on MRI with diffusion-weighted and FLAIR imaging. AJR 193:192–206PubMedCrossRefGoogle Scholar
  16. 16.
    Beitinjaneh A, McKinney AM, Cao Q et al (2011) Toxic leukoencephalopathy following fludarabine-associated hematopoietic cell transplantation. Biol Blood Marrow Transplant 17:300–308PubMedCrossRefGoogle Scholar
  17. 17.
    Filley CM (1999) Toxic leukoencephalopathy. Clin Neuropharmacol 22:249–260PubMedGoogle Scholar
  18. 18.
    Filley CM (2001) Toxic leukoencephalopathy. N Engl J Med 345:425–432PubMedCrossRefGoogle Scholar
  19. 19.
    Sandoval C, Kutscher M, Jayabose S et al (2003) Neurotoxicity of intrathecal methotrexate: MR imaging findings. AJNR 24:1887–1890PubMedGoogle Scholar
  20. 20.
    Rollins N, Winick N, Bash R et al (2004) Acute methotrexate neurotoxicity: findings on diffusion-weighted imaging and correlation with clinical outcome. AJNR 25:1688–1695PubMedGoogle Scholar
  21. 21.
    Shibutani M, Okeda R (1989) Experimental study on subacute neurotoxicity of methotrexate in cats. Acta Neuropathol 78:291–300PubMedCrossRefGoogle Scholar
  22. 22.
    Akiba T, Okeda R, Tajima T (1996) Metabolites of 5-fluorouracil, alpha-fluoro-beta-alanine and fluoroacetic acid, directly injure myelinated fibers in tissue culture. Acta Neuropathol 92:8–13PubMedCrossRefGoogle Scholar
  23. 23.
    Okeda R, Shibutani M, Matsuo T et al (1990) Experimental neurotoxicity of 5-fluorouracil and its derivatives is due to poisoning by the monofluorinated organic metabolites, monofluoroacetic acid and alpha-fluoro-beta-alanine. Acta Neuropathol 81:66–73PubMedCrossRefGoogle Scholar
  24. 24.
    Fisher MJ, Khademian ZP, Simon EM et al (2005) Diffusion-weighted MR imaging of early methotrexate-related neurotoxicity in children. AJNR 26:1686–1689PubMedGoogle Scholar
  25. 25.
    Chessels JM, Cox TC, Kendall B et al (1990) Neurotoxicity in lymphoblastic leukaemia: comparison of oral and intramuscular methotrexate and two doses of radiation. Arch Dis Child 65:416–422CrossRefGoogle Scholar
  26. 26.
    Jaffe N, Takaue Y, Anzai T et al (1985) Transient neurologic disturbances induced by high-dose methotrexate treatment. Cancer 56:1356–1360PubMedCrossRefGoogle Scholar
  27. 27.
    Gowan GM, Herrington JD, Simonetta AB (2002) Methotrexate induced toxic leukoencephalopathy. Pharmacotherapy 22:1183–1187PubMedCrossRefGoogle Scholar
  28. 28.
    Matsumoto K, Takahashi S, Sato A et al (1995) Leukoencephalopathy in childhood hematopoietic neoplasm caused by moderate-dose methotrexate and prophylactic cranial radiotherapy: an MR analysis. Int J Radiat Oncol Biol Phys 32:913–918PubMedCrossRefGoogle Scholar
  29. 29.
    Lien HH, Blomlie V, Saeter G et al (1991) Osteogenic sarcoma: MR signal abnormalities of the brain in asymptomatic patients treated with high-dose methotrexate. Radiology 179:547–550PubMedGoogle Scholar
  30. 30.
    Rosencrantz R, Moon A, Raynes H et al (2001) Cyclosporine-induced neurotoxicity during treatment of Crohn’s disease: lack of correlation with previously reported risk factors. Am J Gastroenterol 92:2778–2782CrossRefGoogle Scholar
  31. 31.
    Trullemans F, Grignard F, Van Camp B et al (2001) Clinical findings and magnetic resonance imaging in severe cyclosporine-related neurotoxicity after allogenic bone marrow transplantation. Eur J Haematol 67:94–99PubMedCrossRefGoogle Scholar
  32. 32.
    Bartynski WS, Zeigler Z, Spearman MP et al (2001) Etiology of cortical and white matter lesions in cyclosporine-A and FK-506 neurotoxicity. AJNR 22:1901–1914PubMedGoogle Scholar
  33. 33.
    Lucey MR, Kolars JC, Merion RM et al (1990) Cyclosporin toxicity at therapeutic blood levels and cytochrome P-450 IIIA. Lancet 335:11–15PubMedCrossRefGoogle Scholar
  34. 34.
    Reece DE, Frei-Lahr DA, Shephard JD et al (1991) Neurologic complications in allogenic bone marrow transplant patients receiving cyclosporin. Bone Marrow Transplant 8:393–401PubMedGoogle Scholar
  35. 35.
    Gijtenbeek JM, van den Bent MJ, Vecht CJ (1999) Cyclosporine neurotoxicity: a review. J Neurol 246:339–346PubMedCrossRefGoogle Scholar
  36. 36.
    Schwartz RB, Bravo SM, Klufas RA et al (1995) Cyclosporine neurotoxicity and its relationship to hypertensive encephalopathy: CT and MR findings in 16 cases. AJR 165:627–631PubMedGoogle Scholar
  37. 37.
    Appignani BA, Bhadelia RA, Blacklow SC et al (1996) Neuroimaging findings in patients on immunosuppressive therapy: experience with tacrolimus toxicity. AJR 166:683–688PubMedGoogle Scholar
  38. 38.
    Lacaille F, Hertz-Pannier L, Nassogne MC (2004) Magnetic resonance imaging for the diagnosis of acute leukoencephalopathy in children treated with tacrolimus. Neuropediatrics 35:130–133PubMedCrossRefGoogle Scholar
  39. 39.
    Ahn KF, Lee JW, Hahn ST et al (2003) Diffusion-weighted MRI and ADC mapping in FK506 neurotoxicity. Br J Radiol 76:916–919PubMedCrossRefGoogle Scholar
  40. 40.
    Freeman CD, Klutman NE, Lamp KC (1997) Metronidazole: a therapeutic review and update. Drugs 54:679–708PubMedCrossRefGoogle Scholar
  41. 41.
    Frytak S, Moertel CH, Childs DS (1978) Neurologic toxicity associated with high-dose metronidazole therapy. Ann Intern Med 88:361–362PubMedGoogle Scholar
  42. 42.
    Kim E, Na DG, Kim EY et al (2007) MR imaging of metronidazole-induced encephalopathy: lesion distribution and diffusion-weighted imaging findings. AJNR 28:1652–1658PubMedCrossRefGoogle Scholar
  43. 43.
    Heaney CJ, Campeau NG, Lindell EP (2003) MR imaging and diffusion-weighted imaging changes in metronidazole (Flagyl)-induced cerebellar toxicity. AJNR 24:1615–1617PubMedGoogle Scholar
  44. 44.
    Ahmed A, Loes DJ, Bressler EL (1995) Reversible resonance imaging findings in metronidazole-induced encephalopathy. Neurology 45:588–589PubMedGoogle Scholar
  45. 45.
    Cecil KM, Halsted MJ, Schapiro M et al (2002) Reversible MR imaging and MR spectroscopy abnormalities in association with metronidazole therapy. J Comput Assist Tomogr 26:948–951PubMedCrossRefGoogle Scholar
  46. 46.
    McErlean A, Abdalia K, Donoghue V et al (2010) The dentate nucleus in children: normal development and patterns of disease. Pediatr Radiol 40:326–339PubMedCrossRefGoogle Scholar
  47. 47.
    Pearl PL, Vezina LG, Saneto RP et al (2009) Cerebral MRI abnormalities associated with vigabatrin therapy. Epilepsia 50:184–194PubMedCrossRefGoogle Scholar
  48. 48.
    Ben-Ari Y (2006) Basic developmental rules and their implications for epilepsy in the immature brain. Epileptic Disord 8:91–102PubMedGoogle Scholar
  49. 49.
    Dracopoulos A, Widjaja E, Raybaud C et al (2010) Vigabatrin-associated reversible MRI signal changes in patients with infantile spasms. Epilepsia 51:1297–1304PubMedCrossRefGoogle Scholar
  50. 50.
    Wheless JW, Carmant L, Bebin M et al (2009) Magnetic resonance imaging abnormalities associated with vigabatrin in patients with epilepsy. Epilepsia 50:195–205PubMedCrossRefGoogle Scholar
  51. 51.
    Thapa M, Khanna PC (2010) Vigabatrin-associated diffusion MRI abnormalities in tuberous sclerosis. Pediatr Radiol 48(Suppl 1):S153CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Ramesh S. Iyer
    • 1
    Email author
  • Apeksha Chaturvedi
    • 1
  • Sumit Pruthi
    • 2
  • Paritosh C. Khanna
    • 1
  • Gisele E. Ishak
    • 1
  1. 1.Department of RadiologySeattle Children’s HospitalSeattleUSA
  2. 2.Department of Radiology and Radiological Sciences and PediatricsMonroe Carell Jr. Children’s Hospital at Vanderbilt UniversityNashvilleUSA

Personalised recommendations