Pediatric Radiology

, Volume 42, Supplement 1, pp 24–32 | Cite as

Novel applications of quantitative MRI for the fetal brain

Advances in Fetal and Neonatal Imaging

Abstract

The advent of ultrafast MRI acquisitions is offering vital insights into the critical maturational events that occur throughout pregnancy. Concurrent with the ongoing enhancement of ultrafast imaging has been the development of innovative image-processing techniques that are enabling us to capture and quantify the exuberant growth, and organizational and remodeling processes that occur during fetal brain development. This paper provides an overview of the role of advanced neuroimaging techniques to study in vivo brain maturation and explores the application of a range of new quantitative imaging biomarkers that can be used clinically to monitor high-risk pregnancies.

Keywords

Fetal brain MRI In vivo Quantitative techniques Brain injury 

Notes

Disclaimer

The supplement this article is part of is not sponsored by the industry. Dr. Clouchoux and Dr. Limperopoulos have no financial interest, investigational or off-label uses to disclose.

References

  1. 1.
    Garel C (2008) Fetal MRI: what is the future? Ultrasound Obstet Gynecol 31:123–128PubMedCrossRefGoogle Scholar
  2. 2.
    Prayer D (2006) Investigation of the normal organ development with fetal MRI. Eur Radiol 17:2458–2471CrossRefGoogle Scholar
  3. 3.
    Limperopoulos C, Clouchoux C (2009) Advancing fetal brain MRI. Targets for the future. Semin Perinatol 33:289–298PubMedCrossRefGoogle Scholar
  4. 4.
    Gholipour A, Estroff JA, Warfield SK (2010) Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI. IEEE Trans Med Imag 29:1739–1758CrossRefGoogle Scholar
  5. 5.
    Jiang S, Xue H, Counsell S et al (2007) In-utero three dimension high resolution fetal brain diffusion tensor imaging. Med Image Comput Comput Assist Interv 10(Pt 1):18–26PubMedGoogle Scholar
  6. 6.
    Rousseau F, Glenn OA, Iordanova B et al (2006) Registration-based approach for reconstruction of high-resolution in utero fetal MR brain images. Acad Radiol 13:1072–1081PubMedCrossRefGoogle Scholar
  7. 7.
    Malamateniou C, McGuinness AK, Allsop JM et al (2011) Snapshot inversion recovery: an optimized single-shot T1-weighted inversion-recovery sequence for improved fetal brain anatomic delineation. Radiology 258:229–235PubMedCrossRefGoogle Scholar
  8. 8.
    Sandrasegaran K, Laal C, Aisen AA et al (2005) Fast fetal magnetic resonance imaging. J Comput Assist Tomogr 29:487–498PubMedCrossRefGoogle Scholar
  9. 9.
    Clouchoux C, Coupé P, Manjon J et al (2010) A novel approach for high-resolution image reconstruction for in-vivo fetal brain MRI. OHBM Conference, Barcelona, Spain. AbstractGoogle Scholar
  10. 10.
    Guizard N, Lepage C, Fonov V et al (2008) Development of fetus brain atlas from multi-axial MR acquisitions. In: Proceedings of the 16th Scientific Meeting, International Society for Magnetic Resonance in Medicine. May 3–9, Toronto, Canada. Abstract 672Google Scholar
  11. 11.
    Limperopoulos C, Tworetzky W, McElhinney DB et al (2010) Brain volume and metabolism in fetuses with congenital heart disease: evaluation with quantitative magnetic resonance imaging and spectroscopy. Circulation 5:26–33CrossRefGoogle Scholar
  12. 12.
    Kazan-Tannus JF, Dialani V, Kataoka ML et al (2007) MR volumetry of brain and CSF in fetuses referred for ventriculomegaly. AJR 189:145–151PubMedCrossRefGoogle Scholar
  13. 13.
    Grossman R, Hoffman C, Mardor Y et al (2006) Quantitative MRI measurements of human fetal brain development in utero. NeuroImage 33:463–470PubMedCrossRefGoogle Scholar
  14. 14.
    Fischl B, Dale A (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97:11050PubMedCrossRefGoogle Scholar
  15. 15.
    Mangin J-F, Coulon O, Frouin V (1998) Robust brain segmentation using histogram scale-space analysis and mathematical morphology. In: Wells WM, Colchester A, Delp S (eds) Medical image computing and computer-assisted intervention—MICCAI’98. Lecture notes in computer science 1496. Springer-Verlag, Berlin, pp 1230–1241Google Scholar
  16. 16.
    Gholipour A, Estroff JA, Barnewolt CE et al (2010) Fetal brain volumetry through MRI volumetric reconstruction and segmentation. Int J Comput Assist Radiol Surg 6:329–339PubMedCrossRefGoogle Scholar
  17. 17.
    Guizard N, Evans AC, Lepage C et al (2009) Automatic model-based fetal brain parcellation to quantify in vivo fetal brain development. OHBM Conference, San Francisco, USA. AbstractGoogle Scholar
  18. 18.
    Dominique Jacob F, Habas P, Kim K et al (2011) Fetal hippocampal development: analysis by magnetic resonance imaging volumetry. Pediatr Res 69(5 Pt 1):425–429CrossRefGoogle Scholar
  19. 19.
    Habas P, Kim K, Corbett-Detig JM et al (2010) A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation. NeuroImage 53:460–470PubMedCrossRefGoogle Scholar
  20. 20.
    Limperopoulos C, Soul JS, Gauvreau K et al (2005) Late gestation cerebellar growth is rapid and impeded by premature birth. Pediatrics 115:688–695PubMedCrossRefGoogle Scholar
  21. 21.
    Kostović I, Judas M (2002) Correlation between the sequential ingrowth of afferents and transient patterns of cortical lamination in preterm infants. Anat Rec 267:1–6PubMedCrossRefGoogle Scholar
  22. 22.
    Corbett-Detig J, Habas PA, Scott JA et al (2010) 3D global and regional patterns of human fetal subplate growth determined in utero. Brain Struct Funct 215:255–263PubMedCrossRefGoogle Scholar
  23. 23.
    Sur M, Rubenstein JL (2005) Patterning and plasticity of the cerebral cortex. Science 310:805–810PubMedCrossRefGoogle Scholar
  24. 24.
    Dubois J, Benders M, Borradori-Tolsa C et al (2008) Primary cortical folding in the human newborn: an early marker of later functional development. Brain 131(Pt 8):2028–2041PubMedCrossRefGoogle Scholar
  25. 25.
    Chi JG, Dooling EC, Gilles FH (1977) Gyral development of the human brain. Ann Neurol 1:86–93PubMedCrossRefGoogle Scholar
  26. 26.
    Batchelor PG, Castellano Smith AD, Hill DL et al (2002) Measures of folding applied to the development of the human fetal brain. IEEE Trans Med Imag 21:953–965CrossRefGoogle Scholar
  27. 27.
    Hu H-H, Guo W-Y, Chen H-Y et al (2009) Morphological regionalization using fetal magnetic resonance images of normal developing brains. Eur J Neurosci 29:1560–1567PubMedCrossRefGoogle Scholar
  28. 28.
    Clouchoux C, Kudelski D, Gholipour A et al (2011) Quantitative in vivo MRI measurement of cortical development in the fetus. Brain Struct Funct. doi:10.1007/s00429-011-0325-x
  29. 29.
    Kasprian G, Langs G, Brugger PC et al (2010) The prenatal origin of hemispheric asymmetry: an in utero neuroimaging study. Cereb Cortex 21:1076–1083PubMedCrossRefGoogle Scholar
  30. 30.
    Rajagopalan V, Scott JA, Habas PA et al (2011) Local tissue growth patterns underlying normal fetal human brain gyrification quantified in utero. J Neurosci 31:2878–2887PubMedCrossRefGoogle Scholar
  31. 31.
    Garel C, Delezoide AL, Delezoide L et al (2004) MRI of the fetal brain: normal development and cerebral pathologies. Springer, New YorkGoogle Scholar
  32. 32.
    Baldoli C, Righini A, Parazzini C et al (2002) Demonstration of acute ischemic lesions in the fetal brain by diffusion magnetic resonance imaging. Ann Neurol 52:243–246PubMedCrossRefGoogle Scholar
  33. 33.
    Righini A, Bianchini E, Parazzini C et al (2003) Apparent diffusion coefficient determination in normal fetal brain: a prenatal MR imaging study. AJNR 24:799–804PubMedGoogle Scholar
  34. 34.
    Agid R, Lieberman S, Nadjari M et al (2006) Prenatal MR diffusion-weighted imaging in a fetus with hemimegalencephaly. Pediatr Radiol 36:138–140PubMedCrossRefGoogle Scholar
  35. 35.
    Bui T, Daire JL, Chalard F et al (2006) Microstructural development of human brain assessed in utero by diffusion tensor imaging. Pediatr Radiol 36:1133–1140PubMedCrossRefGoogle Scholar
  36. 36.
    Kim DH, Chung S, Vigneron DB et al (2008) Diffusion-weighted imaging of the fetal brain in vivo. Magn Reson Med 59:216–220PubMedCrossRefGoogle Scholar
  37. 37.
    Brunel H, Girard N, Confort-Gouny S et al (2004) Fetal brain injury. J Neuroradiol 31:123–137PubMedCrossRefGoogle Scholar
  38. 38.
    Schneider JF, Confort-Gouny S, Le Fur Y et al (2007) Diffusion-weighted imaging in normal fetal maturation. Eur Radiol 17:2422–2429PubMedCrossRefGoogle Scholar
  39. 39.
    Schneider MM, Berman JI, Baumer FM et al (2009) Normative apparent diffusion coefficient values in the developing fetal brain. AJNR 30:1799–1803PubMedCrossRefGoogle Scholar
  40. 40.
    Manganaro L, Perrone A, Savelli S et al (2007) Evaluation of normal brain development by prenatal MR imaging. Radiol Med 112:444–445PubMedCrossRefGoogle Scholar
  41. 41.
    Hüppi PS, Warfield S, Kikinis R (1998) Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann Neurol 43:224–235PubMedCrossRefGoogle Scholar
  42. 42.
    Neil JJ, Shiran SI, McKinstry RC et al (1998) Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotrophy measured by using diffusion tensor MR imaging. Radiology 209:57–66PubMedGoogle Scholar
  43. 43.
    Miller S, Vigneron DB, Henry RG et al (2002) Serial quantitative diffusion tensor MRI of the premature brain: development in newborns with and without injury. J Magn Reson Imag 16:621–632CrossRefGoogle Scholar
  44. 44.
    Berman JI, Hamrick SE, McQuillen PS et al (2011) Diffusion-weighted imaging in fetuses with severe congenital heart defects. AJNR 32:E21–E22PubMedCrossRefGoogle Scholar
  45. 45.
    Sanz-Cortes M, Padilla N, Falcon C et al (2010) Assessment of brain volumetry and neurodevelopment of preterm born infants with and without IUGR at 12–18 months of age. Ultrasound Obstet Gynecol 36(S1):2Google Scholar
  46. 46.
    Manganaro L, Fierro F, Tomei A et al (2010) MRI and DWI: feasibility of DWI and ADC maps in the evaluation of placental changes during gestation. Prenat Diagn 30:1178–1184PubMedCrossRefGoogle Scholar
  47. 47.
    Bonel HM, Stolz B, Diedrichsen L et al (2010) Diffusion-weighted MR imaging of the placenta in fetuses with placental insufficiency. Radiology 257:810–819PubMedCrossRefGoogle Scholar
  48. 48.
    Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267PubMedCrossRefGoogle Scholar
  49. 49.
    Partridge SC, Mukherjee P, Henry RG et al (2004) Diffusion tensor imaging: serial quantitation of white matter tract maturity in premature newborns. NeuroImage 22:1302–1314PubMedCrossRefGoogle Scholar
  50. 50.
    Huang H, Xue R, Zhang J et al (2009) Anatomical characterization of human fetal brain development with diffusion tensor magnetic resonance imaging. J Neurosci 29:4263–4273PubMedCrossRefGoogle Scholar
  51. 51.
    Anjari M, Srinivasan L, Allsop JM et al (2007) Diffusion tensor imaging with tract-based spatial statistics reveals local white matter abnormalities in preterm infants. NeuroImage 35:1021–1027PubMedCrossRefGoogle Scholar
  52. 52.
    Dubois J, Dehaene-Lambertz G, Soarès C et al (2008) Microstructural correlates of infant functional development: example of the visual pathways. J Neurosci 28:1943–1948PubMedCrossRefGoogle Scholar
  53. 53.
    Maas LC, Mukherjee P, Carballido-Gamio J et al (2004) Early laminar organization of the human cerebrum demonstrated with diffusion tensor imaging in extremely premature infants. NeuroImage 22:1134–1140PubMedCrossRefGoogle Scholar
  54. 54.
    Deipolyi AR, Mukherjee P, Gill K et al (2005) Comparing microstructural and macrostructural development of the cerebral cortex in premature newborns: diffusion tensor imaging versus cortical gyration. NeuroImage 27:579–586PubMedCrossRefGoogle Scholar
  55. 55.
    Kasprian G, Brugger PC, Weber M et al (2008) In utero tractography of fetal white matter development. NeuroImage 43:213–224PubMedCrossRefGoogle Scholar
  56. 56.
    Mitter C, Kasprian G, Brugger PC et al (2011) Three-dimensional visualization of fetal white-matter pathways in utero. Ultrasound Obstet Gynecol 37:252–253PubMedCrossRefGoogle Scholar
  57. 57.
    Borowska-Matwiejczuk K, Lemancewicz A, Tarasow E et al (2003) Assessment of fetal distress based on magnetic resonance examinations: preliminary report. Acad Radiol 10:1274–1282PubMedCrossRefGoogle Scholar
  58. 58.
    Wolfberg AJ, Robinson JN, Mulkern R et al (2007) Identification of fetal cerebral lactate using magnetic resonance spectroscopy. Am J Obstet Gynecol 196:e9–e11PubMedCrossRefGoogle Scholar
  59. 59.
    Azpurua H, Alvarado A, Mayobre F et al (2008) Metabolic assessment of the brain using proton magnetic resonance spectroscopy in a growth-restricted human fetus: case report. Am J Perinatol 25:305–309PubMedCrossRefGoogle Scholar
  60. 60.
    Kok RD, van der Bergh AJ, Heerschap A et al (2001) Metabolic information from the human fetal brain obtained with proton magnetic resonance spectroscopy. Am J Obstet Gynecol 185:1011–1015PubMedCrossRefGoogle Scholar
  61. 61.
    Kok RD, van der Berg PP, van der Bergh AJ et al (2002) Maturation of the human fetal brain as observed by 1H MR spectroscopy. Magn Reson Med 48:611–616PubMedCrossRefGoogle Scholar
  62. 62.
    Kreis R (2002) Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 48:949–958PubMedCrossRefGoogle Scholar
  63. 63.
    Fenton BW, Lin CS, Macedonia C et al (2001) The fetus at term: in utero volume-selected proton MR spectroscopy with breath-hold technique—a feasibility study. Radiology 219:563–566PubMedGoogle Scholar
  64. 64.
    Limperopoulos C, Tworetzky W, Robertson RL et al (2008) Impaired brain metabolism in fetuses with congenital heart disease. Circulation 118:S651–S652Google Scholar
  65. 65.
    Preissl H, Lowery CL, Eswaran H (2004) Fetal magnetoencephalography: current progress and trends. Exp Neurol 190(Supp 1):S28–S36PubMedCrossRefGoogle Scholar
  66. 66.
    Blum T, Saling E, Bauer R (1985) First magnetoencephalography recordings of the brain activity of a human fetus. Br J Obstet Gynaecol 92:1224PubMedCrossRefGoogle Scholar
  67. 67.
    Lengel JM, Chen M, Wakai RT (2001) Improved neuromagnetic detection of fetal and neonatal auditory evoked responses. Clin Neurophysiol 112:785–792CrossRefGoogle Scholar
  68. 68.
    Eswaran H, Wilson JD, Preissl H et al (2002) Magnetoencephalograppic recordings of visual evoked brain activity in the human fetus. Lancet 360:779–780PubMedCrossRefGoogle Scholar
  69. 69.
    Moore RJ, Vadeyar S, Tyler DJ et al (2001) Antenatal determination of fetal brain activity in response to an acoustic stimulus using functional magnetic resonance imaging. Hum Brain Mapp 12:94–99PubMedCrossRefGoogle Scholar
  70. 70.
    Hykin J, Moore R, Duncan K et al (1999) Fetal brain activity demonstrated by functional magnetic resonance imaging. Lancet 35:645–646CrossRefGoogle Scholar
  71. 71.
    Jardri R, Pins D, Houfflin-Debarge V et al (2008) Fetal cortical activation to sound at 33 weeks of gestation: a functional MRI study. NeuroImage 42:10–18PubMedCrossRefGoogle Scholar
  72. 72.
    Fulford J, Vadeyar SH, Dodampahala SH et al (2004) Fetal brain activity and hemodynamic response to a vibroacoustic stimulus. Hum Brain Mapp 22:116–121PubMedCrossRefGoogle Scholar
  73. 73.
    Fulford J, Vadeyar SH, Dodampahala SH et al (2003) Fetal brain activity in response to a visual stimulus. Hum Brain Mapp 20:239–245PubMedCrossRefGoogle Scholar
  74. 74.
    Sparling JW (ed) (1993) Concepts in fetal movements research. Haworth, New YorkGoogle Scholar
  75. 75.
    Olesen AG, Svare JA (2004) Decreased fetal movements: background, assessment, and clinical management. Acta Obstet Gynecol Scand 83:818–826PubMedGoogle Scholar
  76. 76.
    Prechtl HF, Einspieler C (1997) Is neurological assessment of the fetus possible? Eur J Obstet Gynecol Reprod Biol 75:81–84PubMedCrossRefGoogle Scholar
  77. 77.
    Hayat TT, Nihat A, Martinez-Biarge M et al (2011) Optimization and initial experience of a multislice balanced steady-state free precession cine sequence for the assessment of fetal behavior in utero. AJNR 32:331–338PubMedCrossRefGoogle Scholar
  78. 78.
    Guo WY, Ono S, Oi S et al (2006) Dynamic motion analysis of fetuses with central nervous system disorders by cine magnetic resonance imaging using fast imaging employing steady-state acquisition and parallel imaging: a preliminary result. J Neurosurg 105:94–100PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Division of Diagnostic Imaging and RadiologyChildren’s National Medical CenterWashingtonUSA
  2. 2.McConnell Brain Imaging Center, Montreal Neurological InstituteMcGill UniversityMontrealCanada
  3. 3.Department of Neurology and NeurosurgeryMcGill UniversityMontrealCanada
  4. 4.Division of Fetal and Transitional MedicineChildren’s National Medical CenterWashingtonUSA

Personalised recommendations