Pediatric Radiology

, 41:534 | Cite as

Newer CT applications and their alternatives: what is appropriate in children?

  • R. Paul GuillermanEmail author


Innovations in image acquisition and reconstruction technologies have greatly expanded the range of CT applications available in the routine clinical setting. CT images of sub-millimeter resolution can now be acquired of entire body regions in a few seconds or even sub-second time, allowing depiction of fine anatomical detail uncompromised by motion artifact. With sophisticated visualization software, image data can be processed into multiplanar, volume-rendered, cine and other formats to better display anatomical abnormalities and facilitate newer applications such as CT angiography, enterography, urography, tracheobronchography and cardiac CT. Newer applications including dual-energy material decomposition CT are furthering the transition of CT from a purely morphological to a combined anatomical, functional and metabolic imaging technique. These newer applications have largely been pioneered in adult populations, and heightened concern of the risk of carcinogenesis from ionizing radiation tempers dissemination of their use in children. Similar information can often be gleaned from alternative imaging modalities without ionizing radiation exposure, such as MRI and US, and what is most appropriate in children will depend on relative diagnostic efficacy, cost, availability and local expertise.


ALARA CT Dual-energy Material decomposition Angiography Children 



The supplement this article is part of is not sponsored by the industry. Dr. Guillerman has no financial interest, investigational or off-label uses to disclose.


  1. 1.
    Fuchs VR, Sox HC Jr (2001) Physicians’ views of the relative importance of thirty medical innovations. Health Aff 20:30–42CrossRefGoogle Scholar
  2. 2.
    Kalender WA (2006) X-ray computed tomography. Phys Med Biol 51:R29–R43PubMedCrossRefGoogle Scholar
  3. 3.
    Rogalla P, Kloeters C, Hein PA (2009) CT technology overview: 64-slice and beyond. Radiol Clin N Am 47:1–11PubMedCrossRefGoogle Scholar
  4. 4.
    Bhargavan M (2008) Trends in the utilization of medical procedures that use ionizing radiation. Health Phys 95:612–627PubMedCrossRefGoogle Scholar
  5. 5.
    Broder J, Fordham LA, Warshauer DM (2007) Increasing utilization of computed tomography in the pediatric emergency department, 2000–2006. Emerg Radiol 14:227–232PubMedCrossRefGoogle Scholar
  6. 6.
    Roudsari B, Moore DS, Jarvik JG (2010) Trend in the utilization of CT for adolescents admitted to an adult level 1 trauma center. J Am Coll Radiol 7:796–801PubMedCrossRefGoogle Scholar
  7. 7.
    Dorfman AL, Fazel R, Einstein A et al (2011) Use of medical imaging procedures with ionizing radiation in children: a population-based study. Arch Pediatr Adolesc Med [Epub ahead of print].Google Scholar
  8. 8.
    Townsend BA, Callahan MJ, Zurakowski D et al (2010) Has pediatric CT at children’s hospitals reached its peak? AJR 194:1194–1196PubMedCrossRefGoogle Scholar
  9. 9.
    Hellinger JC, Epelman M, Rubin GD (2010) Upper extremity computed tomographic angiography: state of the art technique and applications in 2010. Radiol Clin N Am 48:397–421PubMedCrossRefGoogle Scholar
  10. 10.
    Vo NJ, Hammelman BD, Racadio JM et al (2006) Anatomic distribution of renal artery stenosis in children: implications for imaging. Pediatr Radiol 36:1032–1036PubMedCrossRefGoogle Scholar
  11. 11.
    Van Helvoort-Postulart D, Dirksen CD, Nelemans PJ et al (2007) Renal artery stenosis: cost-effectiveness of diagnosis and treatment. Radiology 244:505–513PubMedCrossRefGoogle Scholar
  12. 12.
    Roebuck D (2008) Childhood hypertension: what does the radiologist contribute? Pediatr Radiol 38(Suppl 3):S501–S507PubMedCrossRefGoogle Scholar
  13. 13.
    Kritsaneepaiboon S, Lee EY, Zurakowski D et al (2009) MDCT pulmonary angiography evaluation of pulmonary embolism in children. AJR 192:1246–1252PubMedCrossRefGoogle Scholar
  14. 14.
    Lee EY, Zurakowski D, Boiselle PM (2010) Pulmonary embolism in pediatric patients survey of CT pulmonary angiography practices and policies. Acad Radiol 17:1543–1549PubMedCrossRefGoogle Scholar
  15. 15.
    Sostman HD, Stein PD, Gottschalk A et al (2008) Acute pulmonary embolism: sensitivity and specificity of ventilation-perfusion scintigraphy in PIOPED II study. Radiology 246:941–946PubMedCrossRefGoogle Scholar
  16. 16.
    Gelfand MJ, Gruppo RA, Nasser MP (2008) Ventilation-perfusion scintigraphy in children and adolescents is associated with a low rate of indeterminate studies. Clin Nucl Med 33:606–609PubMedCrossRefGoogle Scholar
  17. 17.
    Babyn PS, Gahunia HK, Massicotte P (2005) Pulmonary thromboembolism in children. Pediatr Radiol 35:258–274PubMedCrossRefGoogle Scholar
  18. 18.
    Lee EY, Kritsaneepaiboon S, Zurakowski D et al (2009) Beyond the pulmonary arteries: alternative diagnoses in children with MDCT pulmonary angiography negative for pulmonary embolism. AJR 193:888–894PubMedCrossRefGoogle Scholar
  19. 19.
    Stein PD, Chenevert TL, Fowler SE et al (2010) Gadolinium-enhanced magnetic resonance angiography for pulmonary embolism: a multicenter prospective study (PIOPED III). Ann Intern Med 152:W142–W143Google Scholar
  20. 20.
    Ley S, Kauczor HU (2008) MR imaging/magnetic resonance angiography of the pulmonary arteries and pulmonary thromboembolic disease. Magn Reson Imaging Clin N Am 16:263–273PubMedCrossRefGoogle Scholar
  21. 21.
    Sena L, Krishnamurthy R, Chung T (2007) Pediatric cardiac CT. In: Lucaya J, Strife J (eds) Pediatric chest imaging. Springer, Berlin, pp 361–395Google Scholar
  22. 22.
    Petersilka M, Bruder H, Krauss B et al (2008) Technical principles of dual source CT. Eur J Radiol 68:362–368PubMedCrossRefGoogle Scholar
  23. 23.
    Einstein AJ, Elliston CD, Arai AE et al (2010) Radiation dose from single-heartbeat coronary CT angiography performed with a 320-detector row volume scanner. Radiology 254:698–706PubMedCrossRefGoogle Scholar
  24. 24.
    Sakuma H (2011) Coronary CT versus MR angiography: the role of MR angiography. Radiology 258:340–349PubMedCrossRefGoogle Scholar
  25. 25.
    Prabhu SP, Mahmood S, Sena L et al (2009) MDCT evaluation of pulmonary embolism in children and young adults following a lateral Fontan procedure: optimizing contrast-enhancement techniques. Pediatr Radiol 39:938–944PubMedCrossRefGoogle Scholar
  26. 26.
    Schievano S, Capelli C, Young C et al (2011) Four-dimensional computed tomography: a method of assessing right ventricular outflow tract and pulmonary artery deformations throughout the cardiac cycle. Eur Radiol 21:36–45PubMedCrossRefGoogle Scholar
  27. 27.
    Yedururi S, Guillerman RP, Chung T et al (2008) Multimodality imaging of tracheobronchial pathology in children. Radiographics 28:e29PubMedCrossRefGoogle Scholar
  28. 28.
    Kroft LJM, Roelofs JJH, Geleijns J (2010) Scan time and patient dose for thoracic imaging in neonates and small children using axial volumetric 320-detector row CT compared to helical 64-, 32-, and 16-detector row CT acquisitions. Pediatr Radiol 40:294–300PubMedCrossRefGoogle Scholar
  29. 29.
    Lee KS, Boiselle PM (2010) Update on multidetector computed tomography imaging of the airways. J Thorac Imaging 25:112–124PubMedCrossRefGoogle Scholar
  30. 30.
    Ferretti GR, Jankowski A, Perrin MA et al (2008) Multi-detector CT evaluation in patients suspected of tracheobronchomalacia: comparison of end-expiratory with dynamic expiratory volumetric acquisitions. Eur J Radiol 68:340–346PubMedCrossRefGoogle Scholar
  31. 31.
    Lee EY, Litmanovich D, Boiselle PM (2009) Multidetector CT evaluation of tracheobronchomalacia. Radiol Clin N Am 49:261–269CrossRefGoogle Scholar
  32. 32.
    Murgu SD, Colt HG (2007) Description of a multidimensional classification system for patients with expiratory central airways collapse. Respirology 12:543–550PubMedCrossRefGoogle Scholar
  33. 33.
    Vucelic B (2009) Inflammatory bowel disease: controversies in the use of diagnostic procedures. Dig Dis 27:269–277PubMedCrossRefGoogle Scholar
  34. 34.
    Zimmerman EM, Al-Hawary MM (2011) MRI of the small bowel in patients with Crohn’s disease. Curr Opin Gastroenterol 27:132–138CrossRefGoogle Scholar
  35. 35.
    Stuart S, Conner T, Ahmed A et al (2011) The smaller bowel: imaging the small bowel in paediatric Crohn’s disease. Postgrad Med J 87:288–297PubMedCrossRefGoogle Scholar
  36. 36.
    Shyn PB, Mortele KJ, Britz-Cunningham SH et al (2010) Low-dose 18F-FDG PET/CT enterography: improving on CT enterography assessment of patients with Crohn disease. J Nucl Med 51:1841–1848PubMedCrossRefGoogle Scholar
  37. 37.
    Boriskin HS, Devito BS, Hines JJ et al (2009) CT enterography vs. capsule endoscopy. Abdom Imaging 34:149–155PubMedCrossRefGoogle Scholar
  38. 38.
    Zappa M, Stefanescu C, Cazals-Hatem D et al (2011) Which magnetic resonance findings accurately evaluate inflammation in small bowel Crohn’s disease? A retrospective comparison with surgical pathologic analysis. Inflamm Bowel Dis 17:984–993PubMedCrossRefGoogle Scholar
  39. 39.
    Giusti S, Faggioni L, Neri E et al (2010) Dynamic MRI of the small bowel: usefulness of quantitative contrast-enhancement parameters and time-signal intensity curves for differentiating between active and inactive Crohn’s disease. Abdom Imaging 35:646–653PubMedCrossRefGoogle Scholar
  40. 40.
    Huprich JE, Rosen MP, Fidler JL et al (2010) ACR appropriateness criteria on Crohn’s disease. J Am Coll Radiol 7:94–102PubMedCrossRefGoogle Scholar
  41. 41.
    Kambadakone AR, Prakash P, Hahn PF et al (2010) Low-dose CT examinations in Crohn’s disease: impact on image quality, diagnostic performance, and radiation dose. AJR 195:78–88PubMedCrossRefGoogle Scholar
  42. 42.
    Sauer CG, Kugathasan S, Martin DR et al (2011) Medical radiation exposure in children with inflammatory bowel disease estimates high cumulative doses. Inflamm Bowel Dis [Epub ahead of print].Google Scholar
  43. 43.
    Siddiki HA, Fidler JL, Fletcher JG et al (2009) Prospective comparison of state-of-the-art MR enterography and CT enterography in small-bowel Crohn’s disease. AJR 193:113–121PubMedCrossRefGoogle Scholar
  44. 44.
    Paolantonia P, Ferrari R, Vecchietti F et al (2009) Current status of MR imaging in the evaluation of IBD in a pediatric population of patients. Eur J Radiol 69:418–424CrossRefGoogle Scholar
  45. 45.
    Huprich JE, Fletcher JG, Alexander JA et al (2008) Obscure gastrointestinal bleeding: evaluation with 64-section multiphase CT enterography—initial experience. Radiology 246:562–571PubMedCrossRefGoogle Scholar
  46. 46.
    Saperas E, Dot J, Videla S et al (2007) Capsule endoscopy versus computed tomographic or standard angiography for the diagnosis of obscure gastrointestinal bleeding. Am J Gastroenterol 102:731–737PubMedCrossRefGoogle Scholar
  47. 47.
    ASGE Standards of Practice Committee (2010) The role of endoscopy in the management of obscure GI bleeding. Gastrointest Endosc 72:471–479CrossRefGoogle Scholar
  48. 48.
    O’Connor OJ, Fitzgerald E, Maher MM (2010) Imaging of hematuria. AJR 195:W263–W267PubMedCrossRefGoogle Scholar
  49. 49.
    Riccabona M, Avni FE, Dacher JN et al (2010) ESPR uroradiology task force and ESUR paediatric working group: imaging and procedural recommendations in paediatric uroradiology, part III. Minutes of the ESPR uroradiology task force minisymposium on intravenous urography, uro-CT and MR-urography in childhood. Pediatr Radiol 40:1315–1320PubMedCrossRefGoogle Scholar
  50. 50.
    Kekelidze M, Dwarkasing RS, Dijkshoorn ML et al (2010) Kidney and urinary tract imaging: triple-bolus multidetector CT urography as a one-stop shop—protocol design, opacification, and image quality analysis. Radiology 255:508–516PubMedCrossRefGoogle Scholar
  51. 51.
    Ruano R, Molho M, Roume J et al (2004) Prenatal diagnosis of fetal skeletal dysplasias by combining two-dimensional and three-dimensional ultrasound and intrauterine three-dimensional helical computed tomography. Ultrasound Obstet Gynecol 24:134–140PubMedCrossRefGoogle Scholar
  52. 52.
    Cassart M (2010) Suspected fetal malformations or bone diseases: how to explore. Pediatr Radiol 40:1046–1051PubMedCrossRefGoogle Scholar
  53. 53.
    Preston DL, Cullings H, Suyama A et al (2008) Solid cancer incidence in atomic bomb survivors exposed in utero or as young children. J Natl Cancer Inst 100:428–436PubMedCrossRefGoogle Scholar
  54. 54.
    Ray JG, Schull MJ, Urquia ML et al (2010) Major radiodiagnostic imaging in pregnancy and the risk of childhood malignancy: a population-based cohort study in Ontario. PLoS Med 7:e1000337PubMedCrossRefGoogle Scholar
  55. 55.
    Boice JD Jr (2011) Lauriston S. Taylor lecture: radiation epidemiology—the golden age and future challenges. Health Phys 100:59–76PubMedCrossRefGoogle Scholar
  56. 56.
    McCollough CH, Schueler BA, Atwell TD et al (2007) Radiation exposure and pregnancy: when should we be concerned? Radiographics 27:909–917PubMedCrossRefGoogle Scholar
  57. 57.
    Brody AS, Guillerman RP (2002) Radiation risk from diagnostic imaging. Pediatr Ann 31:643–647PubMedGoogle Scholar
  58. 58.
    Liu X, Yu L, Primak AN et al (2009) Quantitative imaging of element composition and mass fraction using dual-energy CT: three-material decomposition. Med Phys 36:1602–1609PubMedCrossRefGoogle Scholar
  59. 59.
    Holmes DR 3rd, Fletcher JG, Apel A et al (2008) Evaluation of non-linear blending in dual-energy computed tomography. Eur J Radiol 68:409–413PubMedCrossRefGoogle Scholar
  60. 60.
    Yeh BM, Shepherd JA, Wang ZJ et al (2009) Dual-energy and low-kVp CT in the abdomen. AJR 193:47–54PubMedCrossRefGoogle Scholar
  61. 61.
    Coursey CA, Nelson RC, Boll DT et al (2010) Dual-energy multidetector: How does it work, what can it tell us, and when can we use it in abdominopelvic imaging. Radiographics 30:1037–1055PubMedCrossRefGoogle Scholar
  62. 62.
    Kang M-J, Park CM, Lee C-H et al (2010) Dual-energy CT: clinical applications in various pulmonary diseases. Radiographics 30:685–698PubMedCrossRefGoogle Scholar
  63. 63.
    Feuerlein S, Roessl E, Proksa R et al (2008) Multienergy photon-counting k-edge imaging: potential for improved luminal depiction in vascular imaging. Radiology 249:1010–1016PubMedCrossRefGoogle Scholar
  64. 64.
    Hidas G, Eliahou R, Duvdevani M et al (2010) Determination of renal stone composition with dual-energy CT: in vivo analysis and comparison with X-ray diffraction. Radiology 257:394–401PubMedCrossRefGoogle Scholar
  65. 65.
    Mahgerefteh S, Blachar A, Fraifeld S et al (2010) Dual-energy derived virtual nonenhanced computed tomography imaging: current status and applications. Semin Ultrasound CT MR 31:321–327PubMedCrossRefGoogle Scholar
  66. 66.
    Yu L, Liu X, Leng S et al (2009) Radiation dose reduction in computed tomography: techniques and future perspectives. Imaging Med 1:65–84CrossRefGoogle Scholar
  67. 67.
    Yu L, Primak AN, Liu X et al (2009) Image quality optimization and evaluation of linearly mixed images in dual-source dual-energy CT. Med Phys 36:1019–1024PubMedCrossRefGoogle Scholar
  68. 68.
    Graser A, Johnson TR, Chandarana H et al (2009) Dual energy CT: preliminary observations and potential clinical applications in the abdomen. Eur Radiol 19:13–23PubMedCrossRefGoogle Scholar
  69. 69.
    Takahashi N, Hartman RP, Vrtiska TJ et al (2008) Dual energy CT iodine-subtraction virtual unenhanced technique to detect urinary stones in an iodine-filled collecting system: a phantom study. AJR 190:1169–1173PubMedCrossRefGoogle Scholar
  70. 70.
    Ferda J, Novak M, Mirka H et al (2009) The assessment of intracranial bleeding with virtual unenhanced imaging by means of dual-energy CT angiography. Eur Radiol 19:2518–2522PubMedCrossRefGoogle Scholar
  71. 71.
    Tran DN, Straka M, Roos JE et al (2009) Dual-energy CT discrimination of iodine and calcium: experimental results and implications for lower extremity CT angiography. Acad Radiol 16:160–171PubMedCrossRefGoogle Scholar
  72. 72.
    Stolzmann P, Frauenfelder T, Pfammatter T et al (2008) Endoleaks after endovascular abdominal aortic aneurysm repair: detection with dual-energy dual-source CT. Radiology 249:682–691PubMedCrossRefGoogle Scholar
  73. 73.
    Brown CL, Hartman RP, Dzyubak OP et al (2009) Dual-energy CT iodine overlay technique for characterization of renal masses as cyst or solid: a phantom feasibility study. Eur Radiol 19:1289–1295PubMedCrossRefGoogle Scholar
  74. 74.
    Thieme SF, Becker CR, Hacker M et al (2008) Dual energy CT for the assessment of lung perfusion: correlation to scintigraphy. Eur J Radiol 68:369–374PubMedCrossRefGoogle Scholar
  75. 75.
    Ruzsics B, Lee H, Zwerner PL et al (2008) Dual-energy CT of the heart for diagnosing coronary artery stenosis and myocardial ischemia: initial experience. Eur Radiol 18:2414–2424PubMedCrossRefGoogle Scholar
  76. 76.
    Nicolaou A, Eftekhari A, Sedlic T et al (2008) The utilization of dual source CT in imaging of polytrauma. Eur J Radiol 68:398–408PubMedCrossRefGoogle Scholar
  77. 77.
    Chen G-H, Tang J, Leng S (2008) Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets. Med Phys 35:660–663PubMedCrossRefGoogle Scholar
  78. 78.
    Liu X, Primak AN, Krier JD et al (2009) Renal perfusion and hemodynamics: accurate in vivo determination at CT with a 10-fold decrease in radiation dose and HYPR noise reduction. Radiology 253:98–105PubMedCrossRefGoogle Scholar
  79. 79.
    Supanich M, Tao Y, Nett B et al (2009) Radiation dose reduction in time-resolved CT angiography using highly constrained back projection reconstruction. Phys Med Biol 54:4575–4593PubMedCrossRefGoogle Scholar
  80. 80.
    Rossi A, Gandolfo C, Morana G et al (2010) New MR sequences (diffusion, perfusion, spectroscopy) in brain tumors. Pediatr Radiol 40:999–1009PubMedCrossRefGoogle Scholar
  81. 81.
    Wang J, Licht DJ (2006) Pediatric perfusion MR imaging using arterial spin labeling. Neuroimaging Clin N Am 16:149–167PubMedCrossRefGoogle Scholar
  82. 82.
    Grattan-Smith JD, Jones RA (2006) MR urography in children. Pediatr Radiol 36:1119–1132PubMedCrossRefGoogle Scholar
  83. 83.
    Yilmaz O, Savas R, Sogut A et al (2009) Effectiveness of magnetic resonance angiography in the evaluation of lung perfusion in constrictive bronchiolitis obliterans. Respirology 14:295–298PubMedCrossRefGoogle Scholar
  84. 84.
    Kambadakone AR, Eisner BH, Catalano OA et al (2010) New and evolving concepts in the imaging and management of urolithiasis: urologists’ perspective. Radiographics 30:603–623PubMedCrossRefGoogle Scholar
  85. 85.
    Ascenti G, Siragusa C, Racchiusa S et al (2010) Stone-targeted dual-energy CT: a new diagnostic approach to urinary calculosis. AJR 195:953–958PubMedCrossRefGoogle Scholar
  86. 86.
    Grosjean R, Sauer B, Guerra RM et al (2008) Characterization of human renal stones with MDCT: advantage of dual energy and limitations due to respiratory motion. AJR 190:720–728PubMedCrossRefGoogle Scholar
  87. 87.
    Fischer MA, Reiner CS, Raptis D et al (2011) Quantification of liver iron content with CT—added value of dual-energy. Eur Radiol [Epub ahead of print].Google Scholar
  88. 88.
    Royal SA, Beiderman BA, Goldberg HI et al (1979) Detection and estimation of iron, glycogen and fat in liver of children with hepatomegaly using computed tomography (CT). Pediatr Res 13:408Google Scholar
  89. 89.
    Porter JB, Shah FT (2010) Iron overload in thalassemia and related conditions: therapeutic goals and assessment of response to chelation therapies. Hematol Oncol Clin North Am 24:1109–1130PubMedCrossRefGoogle Scholar
  90. 90.
    Hazirolan T, Akpinar B, Unal S et al (2008) Value of dual energy computed tomography for detection of myocardial iron deposition in thalassaemia patients: initial experience. Eur J Radiol 68:442–445PubMedCrossRefGoogle Scholar
  91. 91.
    St. Pierre TG, Clark PR, Chua-anusorn W et al (2005) Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood 105:855–861PubMedCrossRefGoogle Scholar
  92. 92.
    Hankins JS, McCarville MB, Loeffler RB et al (2009) R2* magnetic resonance imaging of the liver in patients with iron overload. Blood 113:4853–4855PubMedCrossRefGoogle Scholar
  93. 93.
    Boll DT, Marin D, Redmon GM et al (2010) Pilot study assessing differentiation of steatosis hepatis, hepatic iron overload, and combined disease using two-point Dixon MRI at 3T: in vitro and in vivo results of a 2D decomposition technique. AJR 194:964–971PubMedCrossRefGoogle Scholar
  94. 94.
    Hesham A-Kader H (2009) Nonalcoholic fatty liver disease in children living in the obeseogenic society. World J Pediatr 5:245–254PubMedCrossRefGoogle Scholar
  95. 95.
    Park YS, Park SH, Lee SS et al (2011) Biopsy-proven nonsteatotic liver in adults: estimation of reference range for difference in attenuation between the liver and spleen at nonenhanced CT. Radiology 258:760–766PubMedCrossRefGoogle Scholar
  96. 96.
    Ma X, Holalkere N-S, Kambadakone A et al (2009) Imaging-based quantification of hepatic fat: methods and clinical applications. Radiographics 29:1253–1280PubMedCrossRefGoogle Scholar
  97. 97.
    Fischer MA, Gnannt R, Raptis D et al (2011) Quantification of liver fat in the presence of iron and iodine. An ex-vivo dual-energy CT study. Invest Radiol [Epub ahead of print].Google Scholar
  98. 98.
    Cassidy FH, Yokoo T, Aganovic L et al (2009) Fatty liver disease: MR imaging techniques for the detection and quantification of liver steatosis. Radiographics 29:231–260PubMedCrossRefGoogle Scholar
  99. 99.
    Goo HW, Yang DH, Hong S-J et al (2010) Xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans: correlation of xenon and CT density values with pulmonary function test results. Pediatr Radiol 40:1490–1497PubMedCrossRefGoogle Scholar
  100. 100.
    Chae EJ, Seo JB, Goo HW et al (2008) Xenon ventilation CT with a dual-energy technique of dual-source CT: initial experience. Radiology 248:615–624PubMedCrossRefGoogle Scholar
  101. 101.
    Altes TA, de Lange EE (2003) Applications of hyperpolarized helium-3 gas magnetic resonance imaging in pediatric lung disease. Top Magn Reson Imaging 14:231–236PubMedCrossRefGoogle Scholar
  102. 102.
    Matsuoka S, Patz S, Albert MS et al (2009) Hyperpolarized gas MR imaging of the lung: current status as a research tool. J Thorac Imaging 24:181–188PubMedCrossRefGoogle Scholar
  103. 103.
    Pache G, Krauss B, Strohm P et al (2010) Dual-energy CT virtual noncalcium technique: detecting posttraumatic bone marrow lesions—feasibility study. Radiology 256:617–624PubMedCrossRefGoogle Scholar
  104. 104.
    Johnson TRC, Kraub B, Sedlmair M et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17:1510–1517PubMedCrossRefGoogle Scholar
  105. 105.
    Bockisch A, Freudenberg LS, Schmidt D et al (2009) Hybrid imaging by SPECT/CT and PET/CT: proven outcomes in cancer imaging. Semin Nucl Med 39:276–289PubMedCrossRefGoogle Scholar
  106. 106.
    Miracle AC, Mukherji SK (2009) Conebeam CT of the head and neck, part 1: physical principles. AJNR 30:1088–1095PubMedCrossRefGoogle Scholar
  107. 107.
    Helm EJ, Silva CT, Roberts HC et al (2009) Computer-aided detection for the identification of pulmonary nodules in pediatric oncology patients: initial experience. Pediatr Radiol 39:685–693PubMedCrossRefGoogle Scholar
  108. 108.
    Yanagawa M, Tomiyama N, Honda O et al (2010) Multidetector CT of the lung: image quality with garnet-based detectors. Radiology 255:944–954PubMedCrossRefGoogle Scholar
  109. 109.
    Prakash P, Kalra MK, Ackman JB et al (2010) Diffuse lung disease: CT of the chest with adaptive statistical iterative reconstruction technique. Radiology 256:261–269PubMedCrossRefGoogle Scholar
  110. 110.
    Wang G, Yu H, Ye Y (2009) A scheme for multisource interior tomography. Med Phys 36:3575–3581PubMedCrossRefGoogle Scholar
  111. 111.
    Boll DT, Patil NA, Paulson EK et al (2010) Focal cystic high-attenuation lesions: characterization in renal phantom by using photon-counting spectral CT—improved differentiation of lesion composition. Radiology 254:270–276PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Pediatric RadiologyBaylor College of Medicine, Texas Children’s HospitalHoustonUSA

Personalised recommendations