Pediatric Radiology

, Volume 41, Issue 11, pp 1384–1392 | Cite as

Labeling human embryonic stem-cell-derived cardiomyocytes for tracking with MR imaging

  • Rosalinda T. Castaneda
  • Sophie Boddington
  • Tobias D. Henning
  • Mike Wendland
  • Lydia Mandrussow
  • Siyuan Liu
  • Heike Daldrup-LinkEmail author
Original Article



Human embryonic stem cells (hESC) can generate cardiomyocytes (CM), which offer promising treatments for cardiomyopathies in children. However, challenges for clinical translation result from loss of transplanted cell from target sites and high cell death. An imaging technique that noninvasively and repetitively monitors transplanted hESC-CM could guide improvements in transplantation techniques and advance therapies.


To develop a clinically applicable labeling technique for hESC-CM with FDA-approved superparamagnetic iron oxide nanoparticles (SPIO) by examining labeling before and after CM differentiation.

Materials and methods

Triplicates of hESC were labeled by simple incubation with 50 μg/ml of ferumoxides before or after differentiation into CM, then imaged on a 7T MR scanner using a T2-weighted multi-echo spin-echo sequence. Viability, iron uptake and T2-relaxation times were compared between groups using t-tests.


hESC-CM labeled before differentiation demonstrated significant MR effects, iron uptake and preserved function. hESC-CM labeled after differentiation showed no significant iron uptake or change in MR signal (P < 0.05). Morphology, differentiation and viability were consistent between experimental groups.


hESC-CM should be labeled prior to CM differentiation to achieve a significant MR signal. This technique permits monitoring delivery and engraftment of hESC-CM for potential advancements of stem cell-based therapies in the reconstitution of damaged myocardium.


Human embryonic stem cells Cardiomyocytes Iron oxides SPIO MR imaging Cell labeling Children 



This study was supported by a research grant from the California Institute for Regenerative Medicine (CIRM), grant # RS1-00381-1.

Supplementary material

Online Resource 1

Successfully labeled, terminally differentiated, beating hESC-CM labeled with SPIO, ferumoxides, prior to CM differentiation. SPIO particles are seen in the cytoplasm of the labeled hESC-CM (MP4 13085 kb)

Online Resource 2

Terminally differentiated, beating hESC-CM that underwent attempted labeling following CM differentiation. No SPIO particles are visible in these hESC-CM (MP4 4698 kb)

Online Resource 3

Control, unlabeled, terminally differentiated, beating hESC-CM. No SPIO particles are present. These cells show no morphologic or functional difference compared to labeled cells in (1) (MP4 4072 kb)


  1. 1.
    Lipshultz SE, Sleeper LA, Towbin JA et al (2003) The incidence of pediatric cardiomyopathy in two regions of the United States. N Engl J Med 348:1647–1655PubMedCrossRefGoogle Scholar
  2. 2.
    Rosamond W, Flegal K, Friday G et al (2007) Heart disease and stroke statistics—2007 update: a report from the American heart association statistics committee and stroke statistics subcommittee. Circulation 115:e-69–e-171CrossRefGoogle Scholar
  3. 3.
    Bettiol E, Clement S, Krause KH et al (2006) Embryonic and adult stem cell-derived cardiomyocytes: lessons from in vitro models. Rev Physiol Biochem Pharmacol 157:1–30PubMedGoogle Scholar
  4. 4.
    Laflamme MA, Chen KY, Naumova AV et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infracted rat hearts. Nat Biotechnol 25:1015–1024PubMedCrossRefGoogle Scholar
  5. 5.
    Yamada S, Nelson TJ, Crespo-Diaz RJ et al (2008) Embryonic stem cell therapy of heart failure in genetic cardiomyopathy. Stem Cells 26:2644–2653PubMedCrossRefGoogle Scholar
  6. 6.
    van Laake LW, Passier R, Doevendans PA et al (2008) Human embryonic stem cell-derived cardiomyocytes and cardiac repair in rodents. Circ Res 102:1008–1010PubMedCrossRefGoogle Scholar
  7. 7.
    Oyamada N, Itoh H, Sone M et al (2008) Transplantation of vascular cells derived from human embryonic stem cells contributes to vascular regeneration after stroke in mice. J Transl Med 6:54PubMedCrossRefGoogle Scholar
  8. 8.
    Au KW, Liao SY, Lee YK et al (2009) Effects of iron oxide nanoparticles on cardiac differentiation of embryonic stem cells. Biochem Biophys Res Commun 379:898–903PubMedCrossRefGoogle Scholar
  9. 9.
    Fraidenraich D, Benezra R (2006) Embryonic stem cells prevent developmental cardiac defects in mice. Nat Clin Pract Cardiovasc Med 3(Suppl 1):S14–S17PubMedCrossRefGoogle Scholar
  10. 10.
    Martens TP, Godier AF, Parks JJ et al (2009) Percutaneous cell delivery into the heart using hydrogels polymerizing in situ. Cell Transplant 18:297–304PubMedCrossRefGoogle Scholar
  11. 11.
    Cao F, Wagner RA, Wilson KD et al (2008) Transcriptional and functional profiling of human embryonic stem cell-derived cardiomyocytes. PLoS ONE 3:e3474PubMedCrossRefGoogle Scholar
  12. 12.
    Li SH, Lai TY, Sun Z et al (2009) Tracking cardiac engraftment and distribution of implanted bone marrow cells: comparing intra-aortic, intravenous, and intramyocardial delivery. J Thorac Cardiovasc Surg 137(1225–1233):e1221Google Scholar
  13. 13.
    Cao F, Lin S, Xie X et al (2006) In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113:1005–1014PubMedCrossRefGoogle Scholar
  14. 14.
    Semont A, Francois S, Mouiseddine M et al (2006) Mesenchymal stem cells increase self-renewal of small intestinal epithelium and accelerate structural recovery after radiation injury. Adv Exp Med Biol 585:19–30PubMedCrossRefGoogle Scholar
  15. 15.
    Lau JF, Anderson SA, Adler E et al (2010) Imaging approaches for the study of cell-based cardiac therapies. Nat Rev Cardiol 7:97–105PubMedCrossRefGoogle Scholar
  16. 16.
    Ye Y, Bogaert J (2008) Cell therapy in myocardial infarction: emphasis on the role of MRI. Eur Radiol 18:548–569PubMedCrossRefGoogle Scholar
  17. 17.
    Nedopil A, Klenk C, Kim C et al (2010) MR signal characteristics of viable and apoptotic human mesenchymal stem cells in matrix-associated stem cell implants for treatment of osteoarthritis. Invest Radiol 45:634–640PubMedCrossRefGoogle Scholar
  18. 18.
    Bratt-Leal AM, Carpenedo RL, McDevitt TC (2009) Engineering the embryoid body microenvironment to direct embryonic stem cell differentiation. Biotechnol Prog 25:43–51PubMedCrossRefGoogle Scholar
  19. 19.
    Maltsev VA, Wobus AM, Rohwedel J et al (1994) Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes to ionic currents. Circ Res 75:233–244PubMedGoogle Scholar
  20. 20.
    Sykova E, Jendelova P (2007) Migration, fate and in vivo imaging of adult stem cells in the CNS. Cell Death Differ 14:1336–1342PubMedCrossRefGoogle Scholar
  21. 21.
    Wang YX, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331PubMedCrossRefGoogle Scholar
  22. 22.
    Jung CW, Jacobs P (1995) Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13:661–674PubMedCrossRefGoogle Scholar
  23. 23.
    Metz S, Bonaterra G, Rudelius M et al (2004) Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur Radiol 14:1851–1858PubMedCrossRefGoogle Scholar
  24. 24.
    Bulte JW, Ma LD, Magin RL et al (1993) Selective MR imaging of labeled human peripheral blood mononuclear cells by liposome mediated incorporation of dextran-magnetite particles. Magn Reson Med 29:32–37PubMedCrossRefGoogle Scholar
  25. 25.
    Schulze E, Ferrucci JT Jr, Poss K et al (1995) Cellular uptake and trafficking of a prototypical magnetic iron oxide label in vitro. Invest Radiol 30:604–610PubMedCrossRefGoogle Scholar
  26. 26.
    Bulte JW (2009) In vivo MRI cell tracking: clinical studies. AJR 193:314–325PubMedCrossRefGoogle Scholar
  27. 27.
    Arbab AS, Yocum GT, Kalish H et al (2004) Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104:1217–1223PubMedCrossRefGoogle Scholar
  28. 28.
    Kim HS, Oh SY, Joo HJ et al (2010) The effects of clinically used MRI contrast agents on the biological properties of human mesenchymal stem cells. NMR Biomed 23:514–522PubMedCrossRefGoogle Scholar
  29. 29.
    Chung J, Yamada M, Yang PC (2009) Magnetic resonance imaging of human embryonic stem cells. Curr Protoc Stem Cell Biol Chapter 5:Unit 5A 3Google Scholar
  30. 30.
    Adler ED, Bystrup A, Briley-Saebo KC et al (2009) In vivo detection of embryonic stem cell-derived cardiovascular progenitor cells using Cy3-labeled Gadofluorine M in murine myocardium. JACC Cardiovasc Imaging 2:1114–1122PubMedCrossRefGoogle Scholar
  31. 31.
    Josephson L, Tung CH, Moore A et al (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem 10:186–191PubMedCrossRefGoogle Scholar
  32. 32.
    Wang L, Wang Z, Frank TG et al (2009) Rapid and efficient cell labeling with a MRI contrast agent by electroporation in the presence of protamine sulfate. Nanomedicine (Lond) 4:305–315CrossRefGoogle Scholar
  33. 33.
    Bulte JW, Kraitchman DL, Mackay AM et al (2004) Chondrogenic differentiation of mesenchymal stem cells is inhibited after magnetic labeling with ferumoxides. Blood 104:3410–3412, author reply 3412–3413PubMedCrossRefGoogle Scholar
  34. 34.
    Nohroudi K, Arnhold S, Berhorn T et al (2010) In vivo MRI stem cell tracking requires balancing of detection limit and cell viability. Cell Transplant 19:431–441PubMedCrossRefGoogle Scholar
  35. 35.
    Lee JK, Lee MK, Jin HJ et al (2007) Efficient intracytoplasmic labeling of human umbilical cord blood mesenchymal stromal cells with ferumoxides. Cell Transplant 16:849–857PubMedGoogle Scholar
  36. 36.
    Henning TD, Sutton EJ, Kim A et al (2009) The influence of ferucarbotran on the chondrogenesis of human mesenchymal stem cells. Contrast Media Mol Imaging 4:165–173PubMedCrossRefGoogle Scholar
  37. 37.
    Henning TD, Boddington S, Daldrup-Link HE (2008) Labeling hESCs and hMSCs with iron oxide nanoparticles for non-invasive in vivo tracking with MR imaging. J Vis Exp 31:pii 685Google Scholar
  38. 38.
    Maxwell DJ, Bonde J, Hess DA et al (2008) Fluorophore-conjugated iron oxide nanoparticle labeling and analysis of engrafting human hematopoietic stem cells. Stem Cells 26:517–524PubMedCrossRefGoogle Scholar
  39. 39.
    Thu MS, Najbauer J, Kendall SE et al (2009) Iron labeling and pre-clinical MRI visualization of therapeutic human neural stem cells in a murine glioma model. PLoS ONE 4:e7218PubMedCrossRefGoogle Scholar
  40. 40.
    Tallheden T, Nannmark U, Lorentzon M et al (2006) In vivo MR imaging of magnetically labeled human embryonic stem cells. Life Sci 79:999–1006PubMedCrossRefGoogle Scholar
  41. 41.
    Huang ZY, Ge JB, Yang S et al (2007) In vivo cardiac magnetic resonance imaging of superparamagnetic iron oxides-labeled mesenchymal stem cells in swines. Zhonghua Xin Xue Guan Bing Za Zhi 35:344–349PubMedGoogle Scholar
  42. 42.
    Hung TC, Suzuki Y, Urashima T et al (2008) Multimodality evaluation of the viability of stem cells delivered into different zones of myocardial infarction. Circ Cardiovasc Imaging 1:6–13PubMedCrossRefGoogle Scholar
  43. 43.
    Anisimov SV, Morizane A, Correia AS (2010) Risks and mechanisms of oncological disease following stem cell transplantation. Stem Cell Rev 6:411–424PubMedCrossRefGoogle Scholar
  44. 44.
    Hentze H, Soong PL, Wang ST et al (2009) Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res 2:198–210PubMedCrossRefGoogle Scholar
  45. 45.
    Stuckey DJ, Carr CA, Martin-Rendon E et al (2006) Iron particles for noninvasive monitoring of bone marrow stromal cell engraftment into, and isolation of viable engrafted donor cells from, the heart. Stem Cells 24:1968–1975PubMedCrossRefGoogle Scholar
  46. 46.
    Kraitchman DL, Heldman AW, Atalar E et al (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107:2290–2293PubMedCrossRefGoogle Scholar
  47. 47.
    Li Z, Suzuki Y, Huang M et al (2008) Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem Cells 26:864–873PubMedCrossRefGoogle Scholar
  48. 48.
    Crabbe A, Vandeputte C, Dresselaers T et al (2010) Effects of MRI contrast agents on the stem cell phenotype. Cell Transplant 19:919–936PubMedCrossRefGoogle Scholar
  49. 49.
    Jendelova P, Herynek V, Urdzikova L et al (2004) Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res 76:232–243PubMedCrossRefGoogle Scholar
  50. 50.
    Mani V, Adler E, Briley-Saebo KC et al (2008) Serial in vivo positive contrast MRI of iron oxide-labeled embryonic stem cell-derived cardiac precursor cells in a mouse model of myocardial infarction. Magn Reson Med 60:73–81PubMedCrossRefGoogle Scholar
  51. 51.
    Wang B, Jaconi M, Li J et al (2007) MR imaging of embryonic stem cells labeled by superparamagnetic iron oxide. Zhonghua Yi Xue Za Zhi 87:1646–1648PubMedGoogle Scholar
  52. 52.
    Kalish H, Arbab AS, Miller BR et al (2003) Combination of transfection agents and magnetic resonance contrast agents for cellular imaging: relationship between relaxivities, electrostatic forces, and chemical composition. Magn Reson Med 50:275–282PubMedCrossRefGoogle Scholar
  53. 53.
    Charriere GM, Cousin B, Arnaud E et al (2006) Macrophage characteristics of stem cells revealed by transcriptome profiling. Exp Cell Res 312:3205–3214PubMedCrossRefGoogle Scholar
  54. 54.
    Terrovitis J, Stuber M, Youssef A et al (2008) Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart. Circulation 117:1555–1562PubMedCrossRefGoogle Scholar
  55. 55.
    Amsalem Y, Mardor Y, Feinberg MS et al (2007) Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infracted myocardium. Circulation 116:I38–I45PubMedCrossRefGoogle Scholar
  56. 56.
    Pawelczyk E, Jordan EK, Balakumaran A et al (2009) In vivo transfer of intracellular labels from locally implanted bone marrow stromal cells to resident tissue macrophages. PLoS ONE 4:e6712PubMedCrossRefGoogle Scholar
  57. 57.
    Berman SC, Galpoththawela C, Gilad AA et al (2011) Long-term MR cell tracking of neural stem cells grafted in immunocompetent versus immunodeficient mice reveals distinct differences in contrast between live and dead cells. Magn Reson Med 65:564–574PubMedCrossRefGoogle Scholar
  58. 58.
    Yamada T, Yoshikawa M, Kanda S et al (2002) In vitro differentiation of embryonic stem cells into hepatocyte-like cells identified by cellular uptake of indocyanine green. Stem Cells 20:146–154PubMedCrossRefGoogle Scholar
  59. 59.
    Lei Y, Tang H, Feng M et al (2009) Applications of fluorescent quantum dots to stem cell tracing in vivo. J Nanosci Nanotechnol 9:5726–5730PubMedCrossRefGoogle Scholar
  60. 60.
    Boddington SE, Henning TD, Jha P et al (2010) Labeling human embryonic stem cell-derived cardiomyocytes with indocyanine green for noninvasive tracking with optical imaging: an FDA-compatible alternative to firefly luciferase. Cell Transplant 19:55–65PubMedCrossRefGoogle Scholar
  61. 61.
    Terrovitis J, Lautamaki R, Bonios M et al (2009) Noninvasive quantification and optimization of acute cell retention by in vivo positron emission tomography after intramyocardial cardiac-derived stem cell delivery. J Am Coll Cardiol 54:1619–1626PubMedCrossRefGoogle Scholar
  62. 62.
    Qiao H, Zhang H, Zheng Y et al (2009) Embryonic stem cell grafting in normal and infracted myocardium: serial assessment with MR imaging and PET dual detection. Radiology 250:821–829PubMedCrossRefGoogle Scholar
  63. 63.
    Zhang Y, Ruel M, Beanlands RS et al (2008) Tracking stem cell therapy in the myocardium: applications of positron emission tomography. Curr Pharm Des 14:3835–3853PubMedCrossRefGoogle Scholar
  64. 64.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Rosalinda T. Castaneda
    • 1
  • Sophie Boddington
    • 2
  • Tobias D. Henning
    • 3
  • Mike Wendland
    • 2
  • Lydia Mandrussow
    • 2
  • Siyuan Liu
    • 4
  • Heike Daldrup-Link
    • 1
    Email author
  1. 1.Pediatric RadiologyLucile Packard Children’s Hospital, Stanford School of MedicineStanfordUSA
  2. 2.Department of Radiology and Biomedical Imaging, UCSF Medical CenterUniversity of CaliforniaSan FranciscoUSA
  3. 3.Department of Radiology and NeuroradiologyUniversity Hospital of CologneCologneGermany
  4. 4.Language Section, Voice, Speech and Language Branch, National Institute on Deafness and Other Communication DisordersNational Institutes of HealthBethesdaUSA

Personalised recommendations