Pediatric Radiology

, Volume 40, Issue 6, pp 999–1009 | Cite as

New MR sequences (diffusion, perfusion, spectroscopy) in brain tumours

  • Andrea RossiEmail author
  • Carlo Gandolfo
  • Giovanni Morana
  • Mariasavina Severino
  • Maria Luisa Garrè
  • Armando Cama


While MRI has been instrumental in significantly improving care in children harbouring brain tumours, conventional sequences lack information regarding functional parameters including cellularity, haemodynamics and metabolism. Advanced MR imaging modalities, such as diffusion (including diffusion tensor imaging and fibre tractography), perfusion and spectroscopy have significantly improved our understanding of the physiopathology of brain tumours and have provided invaluable additional information for treatment planning and monitoring of treatment results. The contribution of these methods to the characterization of brain neoplasms in children is the focus of the present manuscript.


Brain MR Diffusion Perfusion Spectroscopy Child 


  1. 1.
    Poussaint TY, Rodriguez D (2006) Advanced neuroimaging of pediatric brain tumors: MR diffusion, MR perfusion, and MR spectroscopy. Neuroimaging Clin N Am 16:169–192CrossRefPubMedGoogle Scholar
  2. 2.
    Bükte Y, Paksoy Y, Genç E et al (2005) Role of diffusion-weighted MR in differential diagnosis of intracranial cystic lesions. Clin Radiol 60:375–383CrossRefPubMedGoogle Scholar
  3. 3.
    Tsuruda JS, Chew WM, Moseley ME et al (1990) Diffusion-weighted MR imaging of the brain: value of differentiating between extraaxial cysts and epidermoid tumors. AJNR 11:925–931PubMedGoogle Scholar
  4. 4.
    Yamasaki F, Kurisu K, Satoh K et al (2005) Apparent diffusion coefficient of human brain tumors at MR imaging. Radiology 235:985–991CrossRefPubMedGoogle Scholar
  5. 5.
    Jellison BJ, Field AS, Medow J et al (2004) Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR 25:356–369PubMedGoogle Scholar
  6. 6.
    Covarrubias DJ, Rosen BR, Lev MH (2004) Dynamic magnetic resonance perfusion imaging of brain tumors. Oncologist 9:528–537CrossRefPubMedGoogle Scholar
  7. 7.
    Lacerda S, Law M (2009) Magnetic resonance perfusion and permeability imaging in brain tumors. Neuroimaging Clin N Am 19:527–557CrossRefPubMedGoogle Scholar
  8. 8.
    Cha S (2006) Dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in pediatric patients. Neuroimaging Clin N Am 16:137–147CrossRefPubMedGoogle Scholar
  9. 9.
    Provenzale JM, Wang GR, Brenner T et al (2002) Comparison of permeability in high-grade and low-grade brain tumors using dynamic susceptibility contrast MR imaging. AJR 178:711–716PubMedGoogle Scholar
  10. 10.
    Lüdemann L, Warmuth C, Plotkin M et al (2009) Brain tumor perfusion: comparison of dynamic contrast enhanced magnetic resonance imaging using T1, T2, and T2* contrast, pulsed arterial spin labeling, and H2(15)O positron emission tomography. Eur J Radiol 70:465–474CrossRefPubMedGoogle Scholar
  11. 11.
    Law M, Yang S, Wang H et al (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR 24:1989–1998PubMedGoogle Scholar
  12. 12.
    Shin JH, Lee HK, Kwun BD et al (2002) Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: preliminary results. AJR 179:783–789PubMedGoogle Scholar
  13. 13.
    Tzika AA, Astrakas LG, Zarifi MK et al (2004) Spectroscopic and perfusion magnetic resonance imaging predictors of progression in pediatric brain tumors. Cancer 100:1246–1256CrossRefPubMedGoogle Scholar
  14. 14.
    Cha S (2004) Perfusion MR imaging of brain tumors. Top Magn Reson Imaging 15:279–289CrossRefPubMedGoogle Scholar
  15. 15.
    Barajas RF Jr, Chang JS, Segal MR et al (2009) Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 253:486–496CrossRefPubMedGoogle Scholar
  16. 16.
    Warren KE (2004) NMR spectroscopy and pediatric brain tumors. Oncologist 9:312–318CrossRefPubMedGoogle Scholar
  17. 17.
    Astrakas LG, Zurakowski D, Tzika AA et al (2004) Noninvasive magnetic resonance spectroscopic imaging biomarkers to predict the clinical grade of pediatric brain tumors. Clin Cancer Res 10:8220–8228CrossRefPubMedGoogle Scholar
  18. 18.
    Hwang JH, Egnaczyk GF, Ballard E et al (1998) Proton MR spectroscopic characteristics of pediatric pilocytic astrocytomas. AJNR 19:535–540PubMedGoogle Scholar
  19. 19.
    Cho YD, Choi GH, Lee SP et al (2003) (1)H-MRS metabolic patterns for distinguishing between meningiomas and other brain tumors. Magn Reson Imaging 21:663–672CrossRefPubMedGoogle Scholar
  20. 20.
    Kovanlikaya A, Panigrahy A, Krieger MD et al (2005) Untreated pediatric primitive neuroectodermal tumor in vivo: quantitation of taurine with MR spectroscopy. Radiology 236:1020–1025CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Andrea Rossi
    • 1
    Email author
  • Carlo Gandolfo
    • 1
  • Giovanni Morana
    • 1
  • Mariasavina Severino
    • 1
  • Maria Luisa Garrè
    • 2
  • Armando Cama
    • 3
  1. 1.Pediatric NeuroradiologyG. Gaslini Children’s Research HospitalGenovaItaly
  2. 2.Pediatric Neuro-oncologyG. Gaslini Children’s Research HospitalGenovaItaly
  3. 3.Pediatric NeurosurgeryG. Gaslini Children’s Research HospitalGenovaItaly

Personalised recommendations