Pediatric Radiology

, Volume 40, Issue 2, pp 182–199 | Cite as

Functional analysis in MR urography — made simple

  • Dmitry KhrichenkoEmail author
  • Kassa Darge
Technical Innovation


MR urography (MRU) has proved to be a most advantageous imaging modality of the urinary tract in children, providing one-stop comprehensive morphological and functional information, without the utilization of ionizing radiation. The functional analysis of the MRU scan still requires external post-processing using relatively complex software. This has proved to be a limiting factor in widespread routine implementation of MRU functional analysis and use of MRU functional parameters similar to nuclear medicine. We present software, developed in a pediatric radiology department, that not only enables comprehensive automated functional analysis, but is also very user-friendly, fast, easily operated by the average radiologist or MR technician and freely downloadable at A copy of IDL Virtual Machine is required for the installation, which is obtained at no charge at The analysis software, known as “CHOP-fMRU,” has the potential to help overcome the obstacles to widespread use of functional MRU in children.


MR urography Functional analysis Software Urinary tract Children 



Introducing a new imaging modality in a department and developing software for functional analysis requires the support and input of many people. We would like to express our deepest thanks to the following persons in the Department of Radiology: C. Harris, BSc, for continued professional support in optimizing the MRU procedure, and Drs. R. Bellah, M. Epelman, A. Johnson and T. Roberts for their constructive feedback. Our thanks also goes to Dr. D. Jaramillo for his unrelenting support.

The MR imaging innovation would not have been possible without the interest of and close collaboration with our clinical partners from the Division of Urology at the Children’s Hospital in Philadelphia, particularly with Dr. P. Casale. Many thanks to all our pediatric urologists for their inquisitiveness and helpful criticism and suggestions, which facilitated shaping and improving the quality of the CHOP-fMRU software during the last 2 years.

Supplementary material

247_2009_1458_MOESM1_ESM.pdf (4.5 mb)
ESM 1 (PDF 4.5 mb)
247_2009_1458_MOESM2_ESM.mpg (672 kb)
ESM 2 (MPG 672 kb)

(MPG 468 kb)

247_2009_1458_MOESM4_ESM.mpg (640 kb)
ESM 4 (MPG 640 kb)
247_2009_1458_MOESM5_ESM.mpg (436 kb)
ESM 5 (MPG 436 kb)
247_2009_1458_MOESM6_ESM.mpg (1.2 mb)
ESM 6 (MPG 1.2 mb)
247_2009_1458_MOESM7_ESM.mpg (232 kb)
ESM 7 (MPG 232 kb)
247_2009_1458_MOESM8_ESM.mpg (1.3 mb)
ESM 8 (MPG 1.3 mb)

(MPG 560 kb)

247_2009_1458_MOESM10_ESM.mpg (194 kb)
ESM 10 (MPG 194 kb)
ESM 11

(MPG 532 kb)

247_2009_1458_MOESM12_ESM.mpg (1.3 mb)
ESM 12 (MPG 1.3 mb)
247_2009_1458_MOESM13_ESM.pdf (421 kb)
ESM 13 (PDF 421 kb)
247_2009_1458_MOESM14_ESM.pdf (19 kb)
ESM 14 (PDF 19.2 kb)
247_2009_1458_MOESM15_ESM.pdf (22 kb)
ESM 15 (PDF 21.9 kb)
247_2009_1458_MOESM16_ESM.pdf (59 kb)
ESM 16 (PDF 59 kb)


  1. 1.
    Avni EF, Bali MA, Regnault M et al (2002) MR urography in children. Eur J Radiol 43:154–166CrossRefPubMedGoogle Scholar
  2. 2.
    Grattan-Smith JD, Jones RA (2006) MR urography in children. Pediatr Radiol 36:1119–1132CrossRefPubMedGoogle Scholar
  3. 3.
    Cerwinka WH, Grattan-Smith D, Kirsch AJ (2008) Magnetic resonance urography in pediatric urology. J Pediatr Urol 4:74–83CrossRefPubMedGoogle Scholar
  4. 4.
    Vivier PH, Blondiaux E, Dolores M et al (2009) Functional MR urography in children. J Radiol 90:11–19 Available via Google Scholar
  5. 5.
    Rohrschneider WK, Hoffend J, Becker K et al (2000) Combined static-dynamic MR urography for the simultaneous evaluation of morphology and function in urinary tract obstruction. I. Evaluation of normal status in an animal model. Pediatr Radiol 30:511–522CrossRefPubMedGoogle Scholar
  6. 6.
    Rohrschneider WK, Becker K, Hoffend J et al (2000) Combined static-dynamic MR urography for the simultaneous evaluation of morphology and function in urinary tract obstruction. II. Findings in experimentally induced ureteric stenosis. Pediatr Radiol 30:523–532CrossRefPubMedGoogle Scholar
  7. 7.
    Rohrschneider WK, Haufe S, Wiesel M et al (2002) Functional and morphologic evaluation of congenital urinary tract dilatation by using combined static-dynamic MR urography: findings in kidneys with a single collecting system. Radiology 224:683–694CrossRefPubMedGoogle Scholar
  8. 8.
    McDaniel B, Jones RA, Scherz H et al (2005) Dynamic contrast-enhanced MR urography in the evaluation of pediatric hydronephrosis: part 2, anatomic and functional assessment of ureteropelvic junction obstruction. AJR 185:1608–1614CrossRefPubMedGoogle Scholar
  9. 9.
    Boss A, Schaefer JF, Martirosian P et al (2006) Contrast-enhanced dynamic MR nephrography using the TurboFLASH navigator-gating technique in children. Eur Radiol 16:1509–1518CrossRefPubMedGoogle Scholar
  10. 10.
    Jones RA, Easley K, Little SB et al (2005) Dynamic contrast-enhanced MR urography in the evaluation of pediatric hydronephrosis: part I, functional assessment. AJR 185:1598–1607CrossRefPubMedGoogle Scholar
  11. 11.
    Slovis TL (2008) Magnetic resonance urography (MRU) course introduction. Pediatr Radiol 38 (Suppl 1):S1-S2 (software distributed to participants of MR urography in children workshop by the Society of Pediatric Radiology, February 24–25, 2007, Orlando, FL)Google Scholar
  12. 12.
    Merewitz L, Sunshine JH (2006) A portrait of pediatric radiologists in the United States. AJR 186:12–22CrossRefPubMedGoogle Scholar
  13. 13.
    Grunz DJ, Bramson RT, Taylor GA (2006) Pediatric radiology. Radiology 238:1072–1073CrossRefPubMedGoogle Scholar
  14. 14.
    van Rijn RR, Owens CM, Avni F et al (2006) The future of pediatric radiology: a European point of view. Radiology 238:1074CrossRefPubMedGoogle Scholar
  15. 15.
    Grattan-Smith JD, Little SB, Jones RA (2008) MR urography in children: how we do it. Pediatr Radiol 38(Suppl 1):S3–S17CrossRefPubMedGoogle Scholar
  16. 16.
    Leyendecker JR, Barnes CE, Zagoria RJ (2008) MR urography: techniques and clinical applications. Radiographics 28:23–46CrossRefPubMedGoogle Scholar
  17. 17.
    Grattan-Smith JD, Perez-Bayfield MR, Jones RA et al (2003) MR imaging of kidneys: functional evaluation using F-15 perfusion imaging. Pediatr Radiol 33:293–304PubMedGoogle Scholar
  18. 18.
    Ergen FB, Hussain HK, Carlos RC et al (2007) 3D excretory MR urography: improved image quality with intravenous saline and diuretic administration. J Magn Reson Imaging 25:783–789CrossRefPubMedGoogle Scholar
  19. 19.
    Jones RA, Schmotzer B, Little SB et al (2008) MRU post-processing. Pediatr Radiol 38(Suppl 1):S18–S27CrossRefPubMedGoogle Scholar
  20. 20.
    Kalb B, Votaw JR, Salman K et al (2008) Magnetic resonance nephrourography: current and developing techniques. Radiol Clin N Am 46:11–24CrossRefPubMedGoogle Scholar
  21. 21.
    Grenier N, Mendichovszky I, de Senneville BD et al (2008) Measurement of glomerular filtration rate with magnetic resonance imaging: principles, limitations, and expectations. Semin Nucl Med 38:47–55CrossRefPubMedGoogle Scholar
  22. 22.
    Mendichovszky I, Cutajar M, Gordon I (2009) Reproducibility of the aortic input function (AIF) derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the kidneys in a volunteer study. Eur J Radiol 71:576--581CrossRefPubMedGoogle Scholar
  23. 23.
    Grattan-Smith JD, Little SB, Jones RA (2008) MR urography evaluation of obstructive uropathy. Pediatr Radiol 38(Suppl 1):S49–S69CrossRefPubMedGoogle Scholar
  24. 24.
    Jones RA, Perez-Brayfield MR, Kirsch AJ et al (2004) Renal transit time with MR urography in children. Radiology 233:41–50CrossRefPubMedGoogle Scholar
  25. 25.
    Mendichovszky I, Pedersen M, Frokiaer J et al (2008) How accurate is dynamic contrast-enhanced MRI in the assessment of renal glomerular filtration rate? A critical appraisal. J Magn Reson Imaging 27:925–931CrossRefPubMedGoogle Scholar
  26. 26.
    Rutland MD (1979) A single-injection technique for subtraction of blood background in 1311-hippuran renograms. Br J Radiol 52:134–137CrossRefPubMedGoogle Scholar
  27. 27.
    Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7PubMedGoogle Scholar
  28. 28.
    Peters AM (1994) Graphical analysis of dynamic data: the Patlak-Rutland plot. Nucl Med Commun 15:669–672CrossRefPubMedGoogle Scholar
  29. 29.
    Hackstein N, Kooijman H, Tomaselli S et al (2005) Glomerular filtration rate measured using the Patlak plot technique and contrast-enhanced dynamic MRI with different amounts of gadolinium-DTPA. J Magn Reson Imaging 22:406–414CrossRefPubMedGoogle Scholar
  30. 30.
    Sharkey I, Boddy AV, Wallace H et al (2001) Body surface area estimation in children using weight alone: application in paediatric oncology. Br J Cancer 85:23–28CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of RadiologyThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations