Pediatric Radiology

, 40:31 | Cite as

Functional MRI in children: clinical and research applications



Functional MRI has become a critical research tool for evaluating brain function and developmental trajectories in children. Its clinical use in children is becoming more common. This presentation will review the basic underlying physiologic and technical aspects of fMRI, review research applications that have direct clinical relevance, and outline the current clinical uses of this technology.


Functional MRI Children MRI 


  1. 1.
    Wilke M, Holland SK, Myseros JS et al (2003) Functional magnetic resonance imaging in pediatrics. Neuropediatrics 34:225–233PubMedGoogle Scholar
  2. 2.
    O’Shaughnessy E, Berl M, Moore E et al (2008) Pediatric functional MRI: issues and applications. J Child Neurol 23:791–801PubMedGoogle Scholar
  3. 3.
    Gaillard WD (2004) Functional MR imaging of language, memory, and sensorimotor cortex. Neuroimag Clin N Am 14:471–485Google Scholar
  4. 4.
    Ogawa S, Lee T, Nayak AS, Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14(1):68–78PubMedGoogle Scholar
  5. 5.
    Kwong KK, Belliveau JW, Chesler DA et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89:5675–5679PubMedGoogle Scholar
  6. 6.
    Huettel SA, Song AW, McCarthy G (2004) Chapter 8. Spatial and temporal properties of fMRI. In: Huettel SA, Song AW, McCarthy G (eds) Functional magnetic resonance imaging, 1st edn. Sinauer, Sunderland, pp 185–216Google Scholar
  7. 7.
    Goebel R (2007) Localization of brain activity using functional magnetic resonance imaging. Chapter 2. In: Stippich C (ed) Clinical functional MRI. Presurgical functional neuroimaging, 1st edn. Springer-Verlag, Germany, pp 9–51Google Scholar
  8. 8.
    Logothetis NK (2003) The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci 23:3963–3971PubMedGoogle Scholar
  9. 9.
    Kruger G, Kastrup A, Glover GH (2001) Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 45:595–604PubMedGoogle Scholar
  10. 10.
    Voss HU, Zevin JD, McCandliss BD (2006) Functional MR imaging at 3.0 T versus 1.5 T: a practical review. Neuroimag Clin N Am 16:285–297Google Scholar
  11. 11.
    Zaremba LA (2003) Guidance for industry and FDA staff: criteria for significant risk investigations of magnetic resonance diagnostic devices. U.S. Dept. of health and human services. Food and drug admin. Center for devices and radiological health. Available via Accessed 5 June 2009
  12. 12.
    Bandettini P, Jesmanowicz E, Wong E et al (1993) Processing strategies for time course data sets in functional MRI of the human brain. Magn Reson Med 30:161–173PubMedGoogle Scholar
  13. 13.
    Birn RM, Bandettini PA, Cox RW et al (1999) Event-related fMRI of tasks involving brief motion. Hum Brain Mapp 7:106–114PubMedGoogle Scholar
  14. 14.
    Bandettini PA, Cox RW (2000) Event-related fMRI contrast when using constant interstimulus interval: theory and experiment. Magn Reson Med 43:540–548PubMedGoogle Scholar
  15. 15.
    Hartnick CJ, Schmithorst V, Rudolph C et al (2001) Functional magnetic resonance imaging of the pediatric swallow: imaging the cortex and the brainstem. Laryngoscope 111:1183–1191PubMedGoogle Scholar
  16. 16.
    Patel AM, Cahill LD, Ret J et al (2007) Functional magnetic resonance imaging of hearing-impaired children under sedation before cochlear implantation. Arch Otolaryngol Head Neck Surg 133:677–683PubMedGoogle Scholar
  17. 17.
    Binder JR, Swanson SJ, Hammeke TA et al (2008) A comparison of five fMRI protocols for mapping speech comprehension systems. Epilepsia 49:1980–1997PubMedGoogle Scholar
  18. 18.
    Holland SK, Vannest J, Mecoli M et al (2007) Functional MRI of language lateralization during development in children. Int J Audiol 46:533–551PubMedGoogle Scholar
  19. 19.
    Byars AW, Holland SK, Strawsburg RH et al (2002) Practical aspects of conducting large scale functional magnetic resonance image studies in children. J Child Neurol 17:885–889PubMedGoogle Scholar
  20. 20.
    Kotsoni E, Byrd D, Casey BJ (2006) Special considerations for functional magnetic resonance imaging of pediatric populations. J Magn Reson Imaging 23:877–886PubMedGoogle Scholar
  21. 21.
    Szaflarski JP, Holland SK, Jacola LM et al (2008) Comprehensive presurgical functional MRI language evaluation in adult patients with epilepsy. Epilepsy Behav 12:74–83PubMedGoogle Scholar
  22. 22.
    Loring DW, Meador KJ, Allison JD et al (2002) Now you see it, now you don't: statistical and methodological considerations in fMRI. Epilepsy Behav 3:539–547PubMedGoogle Scholar
  23. 23.
    Marchini J, Presanis A (2004) Comparing methods of analyzing fMRI statistical parametric maps. Neuroimage 22:1203–1213PubMedGoogle Scholar
  24. 24.
    Friston K, Jezzard P, Turner R (1998) Analysis of functional MRI time series. Hum Brain Mapp 6:283–300Google Scholar
  25. 25.
    Xiong J, Gao J-H, Lancaster JL et al (1995) Clustered pixels analysis for functional MRI activation studies of the human brain. Hum Brain Mapp 3:287–301Google Scholar
  26. 26.
    Gaillard WD, Grandin CB, Xu B (2001) Developmental aspects of pediatric fMRI: considerations for image acquisition, analysis, and interpretation. Neuroimage 13:239–249PubMedGoogle Scholar
  27. 27.
    Peck KK (2008) Methods of analysis. Chapter 3. In: Holodny A (ed) Functional neuroimaging. A clinical approach. Informa Healthcare, NY, pp 23–35Google Scholar
  28. 28.
    Chugani HT, Phelps ME, Mazziotta JC (1987) Positron emission tomography study of human brain functional development. Ann Neurol 22:487–497PubMedGoogle Scholar
  29. 29.
    Oski FA, Brugnara C, Nathan DG (1998) A diagnostic approach to the anemic patient. In: Nathan DG, Orkin SH (eds) Nathan and Oski’s hematology of infancy and childhood. Saunders, Philadelphia, pp 3375–3376Google Scholar
  30. 30.
    Levin JM, Frederick B, Ross MH et al (2001) Influence of baseline hematocrit and hemodilution on BOLD fMRI activation. Magn Reson Imaging 19:1055–1062PubMedGoogle Scholar
  31. 31.
    Chiang LK, Dunn AE (2000) Cardiology. In: Siberry GK, Iannone R (eds) The Harriet Lane handbook: a manual for pediatric house officers. Mosby, St. Louis, pp 175–178Google Scholar
  32. 32.
    Schlaggar BL, Brown TT, Lugar HM et al (2002) Functional neuroanatomical differences between adults and school aged children in the processing of single words. Science 296:1476–1479PubMedGoogle Scholar
  33. 33.
    Brauer J, Neumann J, Friederici AD (2008) Temporal dynamics of perisylvian activation during language processing in children and adults. Neuroimage 41:1484–1492PubMedGoogle Scholar
  34. 34.
    Heep A, Scheef L, Janowski J et al (2009) Functional magnetic resonance imaging of the sensorimotor system in preterm infants. Pediatrics 123:294–300PubMedGoogle Scholar
  35. 35.
    Morita T, Kochiyama T, Yamada H et al (2000) Difference in the metabolic response of the lateral geniculate nucleus and the primary visual cortex of infants: an fMRI study. Neurosci Res 38:63–70PubMedGoogle Scholar
  36. 36.
    Born AO, Rostrup E, Miranda MJ et al (2002) Visual cortex reactivity is sedated children examined with perfusion MRI (FAIR). Magn Reson Imaging 20:199–205PubMedGoogle Scholar
  37. 37.
    Altman NR, Bernal B (2006) Pediatric applications of fMRI. Chapter 15. In: Faro S, Mohamed FB (eds) Functional MRI. Basic principles and clinical applications. Springer Science + Business Media, New York, pp 394–428Google Scholar
  38. 38.
    Yuan W, Altaye M, Ret J et al (2009) Quantification of head motion in children during various fMRI language tasks. Hum Brain Mapp 30:1481–1489PubMedGoogle Scholar
  39. 39.
    Kesavadas C, Thomas B, Sujesh S et al (2007) Real-time functional MRI (fMRI) for presurgical evaluation of pediatric epilepsy. Pediatr Radiol 37:964–974PubMedGoogle Scholar
  40. 40.
    Seyffert M, Castellanos FX (2005) Functional MRI in pediatric neurobehavioral disorders. Int Rev Neurobiol 67:239–284PubMedGoogle Scholar
  41. 41.
    Kelly AM, Margulies DS, Castellanos FX (2007) Recent advances in structural and functional brain imaging studies of attention –deficit/hyperactivity disorder. Curr Psych Report 9:401–407Google Scholar
  42. 42.
    Moses P, Roe K, Buxton RB et al (2002) Functional MRI of global and local processing in children. Neuroimage 16:415–424PubMedGoogle Scholar
  43. 43.
    Gathers AD, Bhatt R, Corbly CR et al (2004) Developmental shifts in cortical loci for face and object recognition. Neuroreport 15:1549–1553PubMedGoogle Scholar
  44. 44.
    Dronkers NF, Wilkins DP, Van Valin RD Jr (2004) Lesion analysis of the brain areas involved in language comprehension. Cognition 92:145–177PubMedGoogle Scholar
  45. 45.
    Falzi G, Perrone P, Vignolo LA (1982) Right-left assymetry in anterior speech region. Arch Neurol 39:239–240PubMedGoogle Scholar
  46. 46.
    Levistsky W, Geschwind N (1968) Asymmetries of the right and left hemisphere in man. Trans Am Neurol Assoc 93:232–233Google Scholar
  47. 47.
    Catani M, Jones DK, ffytche DH et al (2005) Perisylvian language networks of the human brain. Ann Neurol 57:8–16PubMedGoogle Scholar
  48. 48.
    Chi JG, Dooling EC, Gilles FH (1977) Left-right asymmetries of the temporal speech areas of the human fetus. Arch Neurol 34:346–348PubMedGoogle Scholar
  49. 49.
    Foundas AL, Leonard CM, Gilmore RL et al (1996) Pars triangularis assymetry and language dominance. Proc Natl Acad Sci USA 93:719–722PubMedGoogle Scholar
  50. 50.
    Dehaene-Lambertz G, Dahaene S, Hertz-Pannier L (2002) Functional neuroimaging of speech perception in infants. Science 298:2013–2015PubMedGoogle Scholar
  51. 51.
    Jardri R, Pins D, Houfflin-Debarge V et al (2008) Fetal cortical activation to sound at 33 weeks of gestation: a functional MRI study. Neuroimage 42:10–18PubMedGoogle Scholar
  52. 52.
    Szaflarski JP, Binder JR, Possing ET (2002) Language lateralization in left-handed and ambidextrous people. fMRI data. Neurology 59:238–244PubMedGoogle Scholar
  53. 53.
    Bates E, Roe K (2001) Language development in children with unilateral brain injury. Chapter 20. In: Nelson CA, Lucina M (eds) Handbook of developmental cognitive neuroscience. MIT, Cambridge, pp 281–308Google Scholar
  54. 54.
    Vardha-Khadem F, O’Gorman A, Watters G (1985) Aphasia and handedness in relation to hemispheric side, age at injury, and severity of cerebral lesion during childhood. Brain 108:677–696Google Scholar
  55. 55.
    Holland SK, Plante E, Byars AW et al (2001) Normal fMRI brain activation patterns in children performing a verb generation task. Neuroimage 14:837–843PubMedGoogle Scholar
  56. 56.
    Petersen SE, Fox PT, Posner MI et al (1988) Positron emission tomography studies of the cortical anatomy of single-word processing. Nature 331:585–586PubMedGoogle Scholar
  57. 57.
    Benson RR, Kwong KK, Buchbinder BR et al (1994) Noninvasive evaluation of language dominance using functional MRI. Proc Soc Magn Reson 2:684Google Scholar
  58. 58.
    Hertz-Pannier L, Gaillard WD, Mott SH et al (1997) Noninvasive assessment of language dominance in children and adolescents with functional MRI: a preliminary study. Neurology 48:1003–1012PubMedGoogle Scholar
  59. 59.
    Schapiro MB, Schmithorst VJ, Wilke M et al (2004) BOLD-fMRI signal increases with age in selected brain regions in children. Neuroreport 315:2575–2578Google Scholar
  60. 60.
    Szaflarski JP, Schmithorst VJ, Altaye M et al (2006) A longitudinal fMRI study of language development in children age 5 to 11. Ann Neurol 59:796–807PubMedGoogle Scholar
  61. 61.
    Brown TT, Lugar HM, Coalson RS et al (2005) Developmental changes in human cerebral functional organization for word generation. Cereb Cortex 15:275–290PubMedGoogle Scholar
  62. 62.
    Gaillard WD, Hertz-Pannier L, Mott SH et al (2000) Functional anatomy of cognitive development: fMRI of verbal fluency in children and adults. Neurology 54:180–185PubMedGoogle Scholar
  63. 63.
    Gaillard WD, Balsamo LM, Ibrahim Z et al (2003) fMRI identifies regional specialization of neural networks for reading in young children. Neurology 60:94–100PubMedGoogle Scholar
  64. 64.
    Vannest J, Karunanayaka PR, Schmithorst VJ et al (2009) Language networks in children: evidence from functional MRI studies. AJR 192:1190–1196PubMedGoogle Scholar
  65. 65.
    Schmithorst VJ, Holland SK, Plante E (2007) Object identification and lexical/semantic access in children: a functional magnetic resonance imaging study of word picture matching. Hum Brain Mapp 28:1060–1074PubMedGoogle Scholar
  66. 66.
    Schmithorst VJ, Holland SK, Plante E (2006) Cognitive modules utilized for narrative comprehension in children: a functional magnetic resonance imaging study. Neuroimage 29:254–266PubMedGoogle Scholar
  67. 67.
    Karunanayaka PR, Holland SK, Schmithorst VJ et al (2007) Age related connectivity changes in fMRI data from children listening to stories. Neuroimage 34:349–360PubMedGoogle Scholar
  68. 68.
    Schmithorst VJ, Holland SK (2007) Sex differences in the development of neuroanatomical functional connectivity underlying intelligence found using Bayesian connectivity analysis. Neuroimage 35:406–419PubMedGoogle Scholar
  69. 69.
    Karunanayaka P, Schmithorst VJ, Vannest J et al (2009) A group independent component analysis of covert verb generation in children: a functional magnetic resonance imaging study. Neuroimage, in pressGoogle Scholar
  70. 70.
    Liu Y, Yang T, Yang X et al (2008) EEG-fMRI study of the intertical epileptic activity in patients with partial epilepsy. J Neurol Sci 268:117–123PubMedGoogle Scholar
  71. 71.
    Liegois F, Cross HJ, Gadian DG et al (2006) Role of fMRI in the decision-making process: epilepsy surgery for children. J Magn Reson 23:933–940Google Scholar
  72. 72.
    Stippich C, Blatow M, Krakow K (2007) Presurgical functional MRI in patients with brain tumors. Chapter 4. In: Stippich C (ed) Clinical functional MRI. Presurgical functional neuroimaging. Springer-Verlag, Berlin, pp 87–134Google Scholar
  73. 73.
    Ulmer JL, Hacein-Bev L, Matthews VP et al (2004) Lesion-induced pseudo-dominance at functional magnetic resonance imaging: implications for preoperative assessments. Neurosurgery 55:569–579PubMedGoogle Scholar
  74. 74.
    Rossini PM, Altamura C, Ferretti A et al (2004) Does cerebrovascular disease affect the coupling between neuronal activity and local haemodynamics? Brain 127:99–110PubMedGoogle Scholar
  75. 75.
    Kamba M, Sung Y-W, Ogawa S (2007) Alteration of blood oxygen level-dependent signaling by local circulatory condition. J Magn Reson Imaging 26:1506–1513PubMedGoogle Scholar
  76. 76.
    Roessler K, Donat M, Lanzenberger R (2005) Evaluation of preoperative high magnetic field motor functional MRI (3 Tesla) in glioma patients by navigated electrocortical stimulation and postoperative outcome. J Neurol Neurosurg Psychiatry 76:1152–1157PubMedGoogle Scholar
  77. 77.
    Pujol J, Deus J, Acebes JJ et al (2008) Identification of the sensorimotor cortex with functional MRI: frequency and actual contribution in a neurosurgical context. J Neuroimag 18:28–33Google Scholar
  78. 78.
    Guzzetta A, Staudt M, Petacchi E et al (2007) Brain representation of active and passive hand movements in children. Pediatric Res 61:485–490Google Scholar
  79. 79.
    Gasser TG, Sandalcioglu EI, Wiedemayaer H et al (2004) A novel passive functional MRI paradigm for preoperative identification of the somatosensory cortex. Neurosug Rev 27:106–112Google Scholar
  80. 80.
    Souweidane MM, Kim KHS, McDowall R et al (1999) Brain mapping in sedated infants and young children with passive functional magnetic resonance imaging. Pediatr Neurosurg 30:86–92PubMedGoogle Scholar
  81. 81.
    Gasser TG, Sandalcioglu EI, Schoch B et al (2005) Functional magnetic resonance imaging in anesthetized patients: a relevant step toward real-time intraoperative functional neuroimaging. Neurosurgery 57:94–99 disc 94–99PubMedGoogle Scholar
  82. 82.
    Golaszewski SM, Siedentopf CM, Koppelstaetter F et al (2004) Modulatory effects on human sensorimotor cortex by whole-hand afferent electrical stimulation. Neurology 62:2262–2269PubMedGoogle Scholar
  83. 83.
    Spiegel J, Tintera J, Gawehn J et al (1999) Functional MRI of human primary somatosensory and motor cortex during median nerve stimulation. Clin Neurophysiol 110:47–52PubMedGoogle Scholar
  84. 84.
    Stippich C, Romanowski A, Nennig E et al (2004) Fully automated localization of the human primary somatosensory cortex in one minute by functional magnetic resonance imaging. Neurosci Lett 364:90–93PubMedGoogle Scholar
  85. 85.
    Lee CC, Jack CR, Riederer SJ (1998) Mapping of the central sulcus with functional MR: active versus passive activation tasks. AJNR 19:847–852PubMedGoogle Scholar
  86. 86.
    Yetkin FZ, Mueller WM, Morris GL et al (1997) Functional MR activation correlated with intraoperative cortical mapping. AJNR 18:1311–1315PubMedGoogle Scholar
  87. 87.
    Lehericy S, Duffau H, Cornu P et al (2000) Correspondence between functional magnetic resonance imaging somatotopy and individual brain anatomy of the central region: comparison with intraoperative stimulation in patients with brain tumors. J Neurosurg 92:589–598PubMedGoogle Scholar
  88. 88.
    Shinoura N, Yamada R, Kodama T et al (2005) Intraoperative cortical mapping has low sensitivity for the detection of motor function in the proximity to a tumor in the primary motor area. Stereotact Funct Neurosurg 83:135–141PubMedGoogle Scholar
  89. 89.
    Krishnan R, Raabe A, Hattingen E et al (2004) Functional magnetic resonance imaging-integrated neuronavigation: correlation between lesion to motor cortex distance and outcome. Neurosurgery 55:904–915PubMedGoogle Scholar
  90. 90.
    Nelson L, Lapsiwala S, Haughton VM et al (2002) Preoperative mapping of the supplementary motor area in patients harboring tumors in the medial frontal lobe. J Neurosurg 97:1108–1114PubMedGoogle Scholar
  91. 91.
    De Tiège X, Connelly A, Liégeois F et al (2009) Influence of motor functional magnetic resonance imaging on the surgical management of children and adolescents with symptomatic focal epilepsy. Neurosurgery 64:856–864PubMedGoogle Scholar
  92. 92.
    Wilke M, Lidzba K, Staudt M et al (2006) An fMRI task battery for assessing hemispheric language dominance in children. Neuroimage 32:400–410PubMedGoogle Scholar
  93. 93.
    Gaillard WD, Balsamo L, Xu B et al (2004) fMRI language task panel improves determination of language dominance. Neurology 63:1403–1408PubMedGoogle Scholar
  94. 94.
    Szaflarski JP, Holland SK, Schmithorst VJ et al (2006) An fMRI study of language lateralization in children and adults. Hum Brain Mapp 27:202–212PubMedGoogle Scholar
  95. 95.
    Binder JR, Frost JA, Hammeke TA et al (1997) Human brain language areas identified by functional magnetic resonance imaging. J Neurosci 17:353–362PubMedGoogle Scholar
  96. 96.
    Balsamo LM, Xu B, Grandin CB et al (2002) A functional magnetic resonance imaging study of left hemispheric dominance in children. Arch Neurol 59:1168–1174PubMedGoogle Scholar
  97. 97.
    Ahmad Z, Balsamo LM, Sachs BC et al (2003) Auditory comprehension of language in young children. Neural networks identified with fMRI. Neurology 60:1598–1605PubMedGoogle Scholar
  98. 98.
    Gaillard WD, Pugilese M, Grandin CB et al (2001) Cortical localization of reading in normal children. An fMRI language study. Neurology 57:47–54PubMedGoogle Scholar
  99. 99.
    Gaillard WD, Balsamo MA, Xu B et al (2002) Language dominance in partial epilepsy patients identified with an fMRI reading task. Neurology 59:256–265PubMedGoogle Scholar
  100. 100.
    Wellmer J, Weber B, Weis S et al (2008) Strongly lateralized activation in language fMRI of atypical dominant patients — implications for presurgical work-up. Epilepsy Res 80:67–76PubMedGoogle Scholar
  101. 101.
    Ruff IM, Petrovich Brennan NM, Peck KK et al (2008) Assessment of the language laterality index in patients with brain tumor using functional MR imaging: effects of thresholding, task selection, and prior surgery. AJNR 29:528–535PubMedGoogle Scholar
  102. 102.
    Rutten GJ, Ramsey NF, van Rijen PC et al (2002) Reproducibility of fMRI-determined language lateralization in individual subjects. Brain Lang 80:421–437PubMedGoogle Scholar
  103. 103.
    Arora J, Pugh K, Westerveld M et al (2009) Language lateralization in epilepsy patients: fMRI validated with the Wada procedure. Epilepsia, epub ahead of print. doi: 10.1111/j.1528-1167.2009.0213.x
  104. 104.
    Yuan W, Szaflarski JP, Schmithorst VJ et al (2006) fMRI shows atypical language lateralization in pediatric epilepsy patients. Epilepsia 47:593–600PubMedGoogle Scholar
  105. 105.
    Wilke M, Schmithorst VJ (2006) A combined bootstrap/histogram analysis approach for computing a lateralization index from neuroimaging data. Neuroimage 33:522–530PubMedGoogle Scholar
  106. 106.
    Woerman FG, Joeckert H, Luerding R et al (2003) Language lateralization by the Wada test and fMRI in 100 patients with epilepsy. Neurology 61:699–701Google Scholar
  107. 107.
    Tillema J-M, Byars AW, Jacola LM et al (2008) Cortical reorganization of language functioning following perinatal left MCA stroke. Brain & Lang 105:99–111Google Scholar
  108. 108.
    Staudt M, Grodd W, Niemann G et al (2001) Early left periventricular brain lesions induce right hemispheric organization of speech. Neurology 57:122–125PubMedGoogle Scholar
  109. 109.
    Moddel G, Lineweaver T, Schuele SU et al (2009) Atypical language lateralization in epilepsy patients. Epilepsia, epub ahead of print. doi: 10.1111/j.1528-1167.2008.02000.x
  110. 110.
    Schevon CA, Carlson C, Zaroff CM et al (2007) Pediatric language mapping: sensitivity of neurostimulation and Wada testing in epilepsy surgery. Epilepsia 48:539–545PubMedGoogle Scholar
  111. 111.
    Baxendale SA, Thompson PJ, Duncan JS (2008) Evidence-based practice: a reevaluation of the intracarotid amobarbital procedure (Wada test). Arch Neurol 65:841–845PubMedGoogle Scholar
  112. 112.
    Abou-Khalil B (2007) An update on determination of language dominance in screening for epilepsy surgery: the Wada test and newer non-invasive alternatives. Epilepsia 48:442–455PubMedGoogle Scholar
  113. 113.
    Kloppel S, Buchel C (2005) Alternatives to the Wada test: a critical view of functional magnetic resonance imaging in preoperative use. Curr Opin Neurol 18:418–423PubMedGoogle Scholar
  114. 114.
    Anderson DP, Harvey SA, Saling MM et al (2006) fMRI lateralization of expressive language in children with cerebral lesions. Epilepsia 47:988–1008Google Scholar
  115. 115.
    Lee D, Swanson SJ, Sabsevitz DS et al (2008) Functional MRI and Wada studies in patients with interhemispheric dissociation of language functions. Epilepsy Behav 13:350–356PubMedGoogle Scholar
  116. 116.
    Sabsevitz DS, Swanson SJ, Hammeke TA et al (2003) Use of preoperative functional neuroimaging to predict language deficits from epilepsy surgery. Neurology 60:1788–1792PubMedGoogle Scholar
  117. 117.
    Benke T, Koylu B, Visani P et al (2006) Language lateralization in temporal lobe epilepsy: a comparison between fMRI and the Wada test. Epilepsia 47:1308–1319PubMedGoogle Scholar
  118. 118.
    Lehericy S, Chen L, Bazin B et al (2000) Functional MR evaluation of temporal and frontal language dominance compared with the Wada test. Neurology 54:1625–1633PubMedGoogle Scholar
  119. 119.
    Liegois F, Cross HJ, Gadian DG et al (2006) Role of fMRI in the decision-making process: epilepsy surgery for children. J Magn Reson 23:933–940Google Scholar
  120. 120.
    Medina LS, Bernal B, Ruiz J (2007) Role of functional MR in determining language dominance in epilepsy and nonepilepsy populations: a Bayesian analysis. Radiology 242:94–100PubMedGoogle Scholar
  121. 121.
    Paolicchi JM (2008) Is the Wada test still relevant? Yes. Arch Neurol 65:838–840PubMedGoogle Scholar
  122. 122.
    Sanai N, Mirzadeh Z, Berger MS (2008) Functional outcome after language mapping for glioma resection. N Engl J Med 358:18–27PubMedGoogle Scholar
  123. 123.
    Ojemann JG, Ojemann GA, Lettich E (2002) Cortical stimulation mapping of language cortex by using a verb generation task: effects of learning and comparison to mapping based on object naming. J Neurosurg 97:33–38PubMedGoogle Scholar
  124. 124.
    Smits M, Visch-Brink E, Schraa-Tam C et al (2006) Functional MR imaging of language processing: an overview of easy-to-implement paradigms for patient care and clinical research. Radiographics 26:S145–S158PubMedGoogle Scholar
  125. 125.
    Bizzi A, Blasi V, Falini A et al (2008) Presurgical functional MRI of language and motor functions: validation with intraoperative electrocortical mapping. Radiology 248:579–589PubMedGoogle Scholar
  126. 126.
    Holodny AI, Schulder M, Liu W-C et al (2000) The effect of brain tumors on BOLD functional MR imaging activation in the motor cortex: implications for image-guided neurosurgery. AJNR 21:1415–1422PubMedGoogle Scholar
  127. 127.
    Hou BL, Bradbury M, Pechk KK et al (2006) Effect of brain tumor neovasculature defined by rCBV on BOLD fMRI activation volume in the primary motor cortex. Neuroimage 32:489–497PubMedGoogle Scholar
  128. 128.
    Szfalrski JP, Holland SK, Schmithorst VJ et al (2004) High resolution functional MRI at 3 T in healthy epilepsy subjects: hippocampal activation with picture encoding task. Epilep & Behav 5:244–252Google Scholar
  129. 129.
    Rabin ML, Narayan VM, Kimberg DY (2004) Functional MRI predicts post-surgical memory following temporal lobectomy. Brain 127:2286–2298PubMedGoogle Scholar
  130. 130.
    Nimsky C, Ganslandt O, Buchfelder M et al (2006) Intraoperative visualization for resection of gliomas: the role of functional neuronavigation and intraoperative 1.5 T MRI. Neurol Res 28:482–487PubMedGoogle Scholar
  131. 131.
    Kamada K, Sawamura Y, Takeuchi F et al (2007) Expressive and receptive language areas determined by a non-invasive reliable method using functional magnetic resonance imaging and magnetoencephalography. Neurosurgery 60:296–306PubMedGoogle Scholar
  132. 132.
    Stapleton SR, Kiriakopoulos E, Mikulis D et al (1997) Combined utility of functional MRI, cortical mapping, and frameless stereotaxy in resection of lesions in eloquent areas of brain in children. Pediatr Neurosurg 26:68–82PubMedGoogle Scholar
  133. 133.
    Current Procedural Terminology (2009) CPT 2009. Professional edition. American medical association, p 306Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Radiology, Cincinnati Children’s Hospital Medical CenterUniversity of CincinnatiCincinnatiUSA
  2. 2.Pediatric Neuroimaging Research Consortium, Cincinnati Children’s Hospital Medical CenterCincinnatiUSA
  3. 3.The Neuroscience InstituteUniversity of CincinnatiCincinnatiUSA

Personalised recommendations