Advertisement

Three-dimensional cine MRI in free-breathing infants and children with congenital heart disease

Abstract

Background

Patients with congenital heart disease frequently have complex cardiac and vascular malformations requiring detailed non-invasive diagnostic evaluation including functional parameters.

Objective

To evaluate the morphological and functional information provided by a novel 3-D cine steady-state free-precession (SSFP) sequence.

Materials and methods

Twenty consecutive children (mean age 2.2 years, nine boys) were examined using a 1.5-T MR system including 2-D cine gradient-recalled-echo sequences, static 3-D SSFP and 3-D cine SSFP sequences.

Results

Measurement of ventricular structures and volumes showed close agreement between the 3-D cine SSFP sequence and the 2-D cine gradient-recalled-echo and static 3-D SSFP sequences (left ventricular volumes mean difference 1.0–1.9 ml and 8.8–11.4%, respectively; right ventricular volumes 1.7–2.1 ml and 9.9–16.9%, respectively). No systematic bias was observed.

Conclusion

3-D cine MRI provides anatomic as well as functional information with sufficient spatial and temporal resolution in free-breathing infants with congenital heart disease.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Fletcher BD, Jacobstein MD (1986) MRI of congenital abnormalities of the great arteries. Am J Radiol 146:941–948

  2. 2.

    Boxt LM, Rozenshtein A (2003) MR imaging of congenital heart disease. Magn Reson Imaging Clin N Am 11:27–48

  3. 3.

    Van Praagh R, Van Praagh S (2008) Morphologic anatomy. In: Fyler DC (ed) Nadas’ pediatric cardiology, 1st edn. Hanley & Belfus, Philadelphia, pp 17–26

  4. 4.

    Geva T (1997) Echocardiographie and Doppler ultrasound. In: Garson A, Bricker JT, Fisher DJ et al (eds) The science and practice of pediatric cardiology, 2nd edn. Williams & Wilkins, Philadelphia, p 832

  5. 5.

    Sorensen TS, Korperich H, Greil GF et al (2004) Operator-independent isotropic three-dimensional magnetic resonance imaging for morphology in congenital heart disease: a validation study. Circulation 110:163–169

  6. 6.

    Razavi RS, Hill DL, Muthurangu V et al (2003) Three-dimensional magnetic resonance imaging of congenital cardiac anomalies. Cardiol Young 13:461–465

  7. 7.

    Weber OM, Martin AJ, Higgins CB (2003) Whole-heart steady-state free precession coronary artery magnetic resonance angiography. Magn Reson Med 50:1223–1228

  8. 8.

    Fenchel M, Greil GF, Martirosian P et al (2006) Three-dimensional morphological magnetic resonance imaging in infants and children with congenital heart disease. Pediatr Radiol 36:1265–1272

  9. 9.

    Greil GF, Boettger T, Germann S et al (2007) Quantitative assessment of ventricular function using three-dimensional SSFP magnetic resonance angiography. J Magn Reson Imaging 26:288–295

  10. 10.

    Martirosian P, Greil GF, Fenchel M et al (2007) Optimization of blood-myocardial contrast in 3D true FISP cardiac imaging at 1.5 T. Magn Reson Med 57:213–219

  11. 11.

    McConnell MV, Khasgiwala VC, Savord BJ et al (1997) Comparison of respiratory suppression methods and navigator locations for MR coronary angiography. AJR 168:1369–1375

  12. 12.

    Miller S, Simonetti OP, Carr J et al (2002) MR Imaging of the heart with cine true fast imaging with steady-state precession: influence of spatial and temporal resolutions on left ventricular functional parameters. Radiology 223:263–269

  13. 13.

    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

  14. 14.

    Botnar RM, Stuber M, Kissinger KV et al (2000) Free-breathing 3D coronary MRA: the impact of “isotropic” image resolution. J Magn Reson Imaging 11:389–393

  15. 15.

    Beerbaum P, Sarikouch S, Laser KT et al (2009) Coronary anomalies assessed by whole heart isotropic 3D magnetic resonance imaging for cardiac morphology in congenital heart disease. J Magn Reson Imaging 29:320–327

  16. 16.

    Laing IA, Teele RL, Stark AR (1988) Diaphragmatic movement in newborn infants. J Pediatr 112:638–643

  17. 17.

    Devlieger H, Daniels H, Marchal G et al (1991) The diaphragm of the newborn infant: anatomical and ultrasonographic studies. J Dev Physiol 16:321–329

  18. 18.

    Hamdan A, Kelle S, Schnackenburg B et al (2008) Single-breathhold four-dimensional assessment of left ventricular volumes and function using k-t BLAST after application of extracellular contrast agent at 3 Tesla. J Magn Reson Imaging 27:1028–1036

  19. 19.

    Lai P, Huang F, Larson AC et al (2008) Fast four-dimensional coronary MR angiography with k-t GRAPPA. J Magn Reson Imaging 27:659–665

  20. 20.

    Warmuth C, Schnorr J, Kaufels N et al (2007) Whole-heart coronary magnetic resonance angiography: contrast-enhanced high-resolution, time-resolved 3D imaging. Invest Radiol 42:550–557

  21. 21.

    Uribe S, Muthurangu V, Boubertakh R et al (2007) Whole-heart cine MRI using real-time respiratory self-gating. Magn Reson Med 57:606–613

  22. 22.

    Lai P, Larson AC, Park J et al (2008) Respiratory self-gated four-dimensional coronary MR angiography: a feasibility study. Magn Reson Med 59:1378–1385

  23. 23.

    Sigfridsson A, Kvitting JP, Knutsson H et al (2007) Five-dimensional MRI incorporating simultaneous resolution of cardiac and respiratory phases for volumetric imaging. J Magn Reson Imaging 25:113–121

  24. 24.

    Shechter G, Resar JR, McVeigh ER (2005) Rest period duration of the coronary arteries: implications for magnetic resonance coronary angiography. Med Phys 32:255–262

  25. 25.

    Wang Y, Vidan E, Bergman GW (1999) Cardiac motion of coronary arteries: variability in the rest period and implications for coronary MR angiography. Radiology 213:751–758

  26. 26.

    Moon JC, Lorenz CH, Francis JM et al (2002) Breath-hold FLASH and FISP cardiovascular MR imaging: left ventricular volume differences and reproducibility. Radiology 223:789–797

  27. 27.

    Lee T, Tsai IC, Fu YC et al (2006) Using multidetector-row CT in neonates with complex congenital heart disease to replace diagnostic cardiac catheterization for anatomical investigation: initial experiences in technical and clinical feasibility. Pediatr Radiol 36:1273–1282

Download references

Acknowledgements

We thank the ‘Stiftung zur Förderung und Erfassung von Zivillisationserkrankungen’ foundation for support of the study and A. Greiser (Siemens Healthcare, Erlangen, Germany) for technical support.

Author information

Correspondence to Achim Seeger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Patient No.15. Left side reformatted four-chamber 3-D cine SSFP data; right side 2-D GRE sequence (MPG 1818 kb)

Animation 1

Patient No.15. Left side reformatted four-chamber 3-D cine SSFP data; right side 2-D GRE sequence (MPG 1818 kb)

Animation 2

3-D cine SSFP (MPG 2928 kb)

Animation 3

2-D GRE cine files of patient No.5 (MPG 27359 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Seeger, A., Fenchel, M.C., Greil, G.F. et al. Three-dimensional cine MRI in free-breathing infants and children with congenital heart disease. Pediatr Radiol 39, 1333 (2009) doi:10.1007/s00247-009-1390-7

Download citation

Keywords

  • Cardiac
  • Cine
  • MRI
  • Children
  • Cardiac MRI
  • 3D cine
  • 4D
  • Congenital heart disease