Advertisement

Pediatric Radiology

, Volume 38, Issue 12, pp 1314–1322 | Cite as

Virtual cardiotomy based on 3-D MRI for preoperative planning in congenital heart disease

  • Thomas Sangild Sørensen
  • Philipp Beerbaum
  • Jesper Mosegaard
  • Allan Rasmusson
  • Tobias Schaeffter
  • Conal Austin
  • Reza Razavi
  • Gerald Franz Greil
Original Article

Abstract

Background

Patient-specific preoperative planning in complex congenital heart disease may be greatly facilitated by virtual cardiotomy. Surgeons can perform an unlimited number of surgical incisions on a virtual 3-D reconstruction to evaluate the feasibility of different surgical strategies.

Objective

To quantitatively evaluate the quality of the underlying imaging data and the accuracy of the corresponding segmentation, and to qualitatively evaluate the feasibility of virtual cardiotomy.

Materials and methods

A whole-heart MRI sequence was applied in 42 children with congenital heart disease (age 3 ± 3 years, weight 13 ± 9 kg, heart rate 96 ± 21 bpm). Image quality was graded 1–4 (diagnostic image quality ≥2) by two independent blinded observers. In patients with diagnostic image quality the segmentation quality was also graded 1–4 (4 no discrepancies, 1 misleading error).

Results

The average image quality score was 2.7 – sufficient for virtual reconstruction in 35 of 38 patients (92%) older than 1 month. Segmentation time was 59 ± 10 min (average quality score 3.5). Virtual cardiotomy was performed in 19 patients.

Conclusion

Accurate virtual reconstructions of patient-specific cardiac anatomy can be produced in less than 1 h from 3-D MRI. The presented work thus introduces a new, clinically feasible noninvasive technique for improved preoperative planning in complex cases of congenital heart disease.

Keywords

MRI Surgical planning Children 

Notes

Acknowledgement

This work was funded by the Danish Research Council (grant no. 2059-03-0004).

References

  1. 1.
    Sørensen TS, Greil GF, Hansen OK et al (2006) Surgical simulation – a new tool to evaluate surgical incisions in congenital heart disease? Interact Cardiovasc Thorac Surg 5:536–539PubMedCrossRefGoogle Scholar
  2. 2.
    Sørensen TS, Mosegaard J, Greil GF et al (2007) Images in cardiovascular medicine. Virtual cardiotomy for preoperative planning. Circulation 115:e312PubMedCrossRefGoogle Scholar
  3. 3.
    Ou P, Celermajer DS, Calcagni G et al (2007) Three-dimensional CT scanning: a new diagnostic modality in congenital heart disease. Heart 93:908–913PubMedCrossRefGoogle Scholar
  4. 4.
    Geva T, Greil GF, Marshall AC et al (2002) Gadolinium-enhanced 3-dimensional magnetic resonance angiography of pulmonary blood supply in patients with complex pulmonary stenosis or atresia: comparison with X-ray angiography. Circulation 106:473–478PubMedCrossRefGoogle Scholar
  5. 5.
    Sørensen TS, Korperich H, Greil GF et al (2004) Operator-independent isotropic three-dimensional magnetic resonance imaging for morphology in congenital heart disease: a validation study. Circulation 110:163–169PubMedCrossRefGoogle Scholar
  6. 6.
    Hollingsworth CL, Yoshizumi TT, Frush DP et al (2007) Pediatric cardiac-gated CT angiography: assessment of radiation dose. AJR 189:12–18PubMedCrossRefGoogle Scholar
  7. 7.
    Brenner DJ, Hall EJ (2007) Computed tomography – an increasing source of radiation exposure. N Engl J Med 357:2277–2284PubMedCrossRefGoogle Scholar
  8. 8.
    Leschka S, Wildermuth S, Boehm T et al (2006) Noninvasive coronary angiography with 64-section CT: effect of average heart rate and heart rate variability on image quality. Radiology 241:378–385PubMedCrossRefGoogle Scholar
  9. 9.
    Greil GF, Powell AJ, Gildein HP et al (2002) Gadolinium-enhanced three-dimensional magnetic resonance angiography of pulmonary and systemic venous anomalies. J Am Coll Cardiol 39:335–341PubMedCrossRefGoogle Scholar
  10. 10.
    Sørensen TS, Pedersen EM, Hansen OK et al (2003) Visualization of morphological details in congenitally malformed hearts: virtual three-dimensional reconstruction from magnetic resonance imaging. Cardiol Young 13:451–460PubMedGoogle Scholar
  11. 11.
    van Praagh R (2006) Segmental approach to diagnosis. In: Keane J, Fyler D, Lock, J (eds) NADAS’ pediatric cardiology, 2nd edn. Elsevier, Philadelphia, chapter 4Google Scholar
  12. 12.
    Fenchel M, Greil GF, Martirosian P et al (2006) Three-dimensional morphological magnetic resonance imaging in infants and children with congenital heart disease. Pediatr Radiol 36:1265–1272PubMedCrossRefGoogle Scholar
  13. 13.
    Sørensen TS, Therkildsen SV, Makowski P et al (2001) A new virtual reality approach for planning of cardiac interventions. Artif Intell Med 22:193–214PubMedCrossRefGoogle Scholar
  14. 14.
    Stellin G, Padalino M, Milanesi O et al (2000) Surgical closure of apical ventricular septal defects through a right ventricular apical infundibulotomy. Ann Thorac Surg 69:597–601PubMedCrossRefGoogle Scholar
  15. 15.
    van Praagh S, Mayer JE Jr, Berman NB et al (2002) Apical ventricular septal defects: follow-up concerning anatomic and surgical considerations. Ann Thorac Surg 73:48–56PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Thomas Sangild Sørensen
    • 1
    • 2
  • Philipp Beerbaum
    • 3
    • 4
  • Jesper Mosegaard
    • 5
  • Allan Rasmusson
    • 1
  • Tobias Schaeffter
    • 3
  • Conal Austin
    • 6
  • Reza Razavi
    • 3
    • 4
  • Gerald Franz Greil
    • 3
    • 4
  1. 1.Department of Computer ScienceUniversity of AarhusAarhus NDenmark
  2. 2.Institute of Clinical MedicineUniversity of AarhusAarhusDenmark
  3. 3.Division of Imaging SciencesKing’s College London School of MedicineLondonUK
  4. 4.Department of Paediatric CardiologyGuy’s and St. Thomas’ HospitalLondonUK
  5. 5.Alexandra InstituteAarhusDenmark
  6. 6.Department of Cardiothoracic SurgeryGuy’s and St. Thomas’ HospitalLondonUK

Personalised recommendations