Advertisement

Pediatric Radiology

, 38:1293 | Cite as

Diffusion-weighted and dynamic contrast-enhanced imaging as markers of clinical behavior in children with optic pathway glioma

  • Sarah C. Jost
  • Joseph W. Ackerman
  • Joel R. Garbow
  • Linda P. Manwaring
  • David H. Gutmann
  • Robert C. McKinstryEmail author
Original Article

Abstract

Background

Optic pathway gliomas (OPGs) are common pediatric brain tumors that pose significant clinical challenges with regard to predicting which tumors are likely to become symptomatic and require treatment. These tumors can arise sporadically or in the context of the inherited cancer predisposition syndrome neurofibromatosis type 1 (NF1). Few studies have suggested biological or imaging markers that predict the clinical course of this disease.

Objective

In this cross-sectional study, we hypothesized that the clinical behavior of OPGs in children can be differentiated by diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) MRI.

Materials and methods

A total of 27 children with OPG were studied using DW and DCE MRI protocols. Diffusivity and permeability were calculated and correlated with the clinical behavior the OPG.

Results

Mean diffusivity values of 1.39 μm2/ms and mean permeability values of 2.10 ml/min per 100 cm3 of tissue were measured. Clinically aggressive OPGs had significantly higher mean permeability values (P = 0.05) than clinically stable tumors. In addition, there was a strong correlation between clinical aggressiveness and the absence of NF1 (P < 0.01).

Conclusion

These results suggest that DCE MRI might be a useful biomarker for clinically aggressive OPG, which should be confirmed in larger prospective longitudinal studies.

Keywords

Diffusion-weighted MRI Dynamic contrast MRI Optic pathway Glioma Neurofibromatosis 

Notes

Acknowledgement

Partial support for this project was provided by Schnucks Markets Inc. to D.H.G.

References

  1. 1.
    Louis DN, Ohgaki H, Wiestler OD et al (2007) WHO classification of tumours of the central nervous system. IARC, Lyon, FranceGoogle Scholar
  2. 2.
    Friedman JM (1989) Epidemiology of neurofibromatosis type 1. Am J Med Genet 89:1–6CrossRefGoogle Scholar
  3. 3.
    Friedman JM, Gutmann DH, MacCollin MM et al (1999) Neurofibromatosis, 3rd edn. Johns Hopkins Press, BaltimoreGoogle Scholar
  4. 4.
    Listernick R, Louis DN, Packer RJ et al (1997) Optic pathway gliomas in children with NF1: consensus statement from the NF1 Optic Pathway Glioma Task Force. Ann Neurol 41:143–149PubMedCrossRefGoogle Scholar
  5. 5.
    Listernick R, Ferner RE, Liu GT et al (2007) Optic pathway glioma in neurofibromatosis-1: controversies and recommendations. Ann Neurol 61:189–198PubMedCrossRefGoogle Scholar
  6. 6.
    King A, Listernick R, Charrow J et al (2003) Optic pathway gliomas in neurofibromatosis type 1: the effect of presenting symptoms on outcome. Am J Med Genet 122A:95–99CrossRefPubMedGoogle Scholar
  7. 7.
    Czyzyk E, Jozwiak S, Roszkowski M et al (2003) Optic pathway gliomas in children with and without neurofibromatosis 1. J Child Neurol 18:471–478PubMedCrossRefGoogle Scholar
  8. 8.
    Shamji MF, Benoit BG (2007) Syndromic and sporadic pediatric optic pathway gliomas: review of clinical and histopathological differences and treatment implications. Neurosurg Focus 23:E3PubMedCrossRefGoogle Scholar
  9. 9.
    Singhal S, Birch HM, Kerr B et al (2002) Neurofibromatosis type 1 and sporadic optic gliomas. Arch Dis Child 87:65–70PubMedCrossRefGoogle Scholar
  10. 10.
    Tow SL, Chandela S, Miller NR (2003) Long-term outcome in children with gliomas of the anterior visual pathway. Pediatr Neurol 28:262–270PubMedCrossRefGoogle Scholar
  11. 11.
    Adams C, Fletcher WA, Myles ST (1997) Chiasmal glioma in neurofibromatosis type 1 with severe visual loss regained with radiation. Pediatr Neurol 17:80–82PubMedCrossRefGoogle Scholar
  12. 12.
    Champion MP, Robinson RO (1995) Screening for optic gliomas in neurofibromatosis type 1. The role of neuroimaging. J Pediatr 127:507–508PubMedGoogle Scholar
  13. 13.
    Brzowski AE, Bazan C, Mumma JV et al (1992) Spontaneous regression of optic glioma in a patient with neurofibromatosis. Neurology 42:679–681PubMedGoogle Scholar
  14. 14.
    Liu GT, Lessel S (1992) Spontaneous visual improvement in chiasmal gliomas. Am J Ophthalmol 114:193–201PubMedGoogle Scholar
  15. 15.
    Parazzini C, Triulzi F, Bianchini E et al (1995) Spontaneous involution of optic pathway lesions in neurofibromatosis type 1: serial contrast MR evaluation. AJNR 16:1711–1718PubMedGoogle Scholar
  16. 16.
    Shuper A, Horev G, Kornreich L et al (1997) Visual pathway glioma: an erratic tumour with therapeutic dilemmas. Arch Dis Child 76:259–263PubMedCrossRefGoogle Scholar
  17. 17.
    Gutmann DH, Aylsworth A, Carey JC et al (1997) The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2. JAMA 278:51–57PubMedCrossRefGoogle Scholar
  18. 18.
    Ewing JR, Knight RA, Nagaraja TN et al (2003) Patlak plots of Gd-DTPA MRI data yield blood-brain transfer constants concordant with those of 14C-sucrose in areas of blood-brain opening. Magn Reson Med 50:283–292PubMedCrossRefGoogle Scholar
  19. 19.
    Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood to brain transfer constants from multiple uptake data. J Cereb Blood Flow Metab 3:1–7PubMedGoogle Scholar
  20. 20.
    Chenevert TL, McKeever PE, Ross BD (1997) Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin Cancer Res 3:1457–1466PubMedGoogle Scholar
  21. 21.
    Hall DE, Moffat BA, Stojanovska J et al (2004) Efficacy of DTI-015 using diffusion MRI as an early surrogate marker. Clin Cancer Res 10:7852–7859PubMedCrossRefGoogle Scholar
  22. 22.
    Moffat BA, Chenevert TL, Lawrence TS et al (2005) Functional diffusion map: a noninvasive MRI biomarker for stratification of clinical brain tumor response. Proc Natl Acad Sci USA 102:5524–5529PubMedCrossRefGoogle Scholar
  23. 23.
    Gauvain KM, McKinstry RC, Mukherjee P et al (2001) Evaluating pediatric brain tumor cellularity with diffusion-tensor imaging. AJR 177:449–454PubMedGoogle Scholar
  24. 24.
    Rumboldt Z, Camacho DL, Lake D et al (2006) Apparent diffusion coefficients for differentiation of cerebellar tumors in children. AJNR 27:1362–1369PubMedGoogle Scholar
  25. 25.
    Yamasaki F, Kurisu K, Satoh K et al (2005) Apparent diffusion coefficient of human brain tumors at MR imaging. Radiology 235:985–991PubMedCrossRefGoogle Scholar
  26. 26.
    Sener RN (2001) Diffusion MRI in neurofibromatosis type 1: ADC evaluations of the optic pathways, and a comparison with normal individuals. Comput Med Imaging Graph 26:59–64CrossRefGoogle Scholar
  27. 27.
    Pauliah M, Saxena V, Haris M et al (2007) Improved T(1)-weighted dynamic contrast-enhanced MRI to probe microvascularity and heterogeneity of human glioma. Magn Reson Imaging 25:1292–1299PubMedCrossRefGoogle Scholar
  28. 28.
    Bajenaru ML, Garbow JR, Perry A et al (2005) Natural history of neurofibromatosis 1-associated optic nerve glioma in mice. Ann Neurol 57:119–127PubMedCrossRefGoogle Scholar
  29. 29.
    Law M, Oh S, Babb JS et al (2006) Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging – prediction of patient clinical response. Radiology 238:658–667PubMedCrossRefGoogle Scholar
  30. 30.
    Robinson SP, Howe FA, Griffiths JR et al (2007) Susceptibility contrast magnetic resonance imaging determination of fractional tumor blood volume: a noninvasive imaging biomarker of response to the vascular disrupting agent ZD6126. Int J Radiat Oncol Biol Phys 69:872–879PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Sarah C. Jost
    • 1
  • Joseph W. Ackerman
    • 2
  • Joel R. Garbow
    • 2
    • 6
  • Linda P. Manwaring
    • 3
    • 4
  • David H. Gutmann
    • 5
    • 6
  • Robert C. McKinstry
    • 2
    • 3
    Email author
  1. 1.Department of NeurosurgerySwedish Neuroscience InstituteSeattleUSA
  2. 2.Department of RadiologyWashington University School of MedicineSt. LouisUSA
  3. 3.Department of PediatricsWashington University School of MedicineSt. LouisUSA
  4. 4.Department of Genetics and Genomic MedicineWashington University School of MedicineSt. LouisUSA
  5. 5.Department of NeurologyWashington University School of MedicineSt. LouisUSA
  6. 6.Alvin J. Siteman Cancer CenterSt. LouisUSA

Personalised recommendations