Pediatric Radiology

, Volume 37, Issue 7, pp 649–656 | Cite as

Relevance of CT and MRI in retinoblastoma for the diagnosis of postlaminar invasion with normal-size optic nerve: a retrospective study of 150 patients with histological comparison

  • Hervé J. BrisseEmail author
  • Myriam Guesmi
  • Isabelle Aerts
  • Xavier Sastre-Garau
  • Alexia Savignoni
  • Livia Lumbroso-Le Rouic
  • Laurence Desjardins
  • François Doz
  • Bernard Asselain
  • Danièle Bours
  • Sylvia Neuenschwander
Original Article



Detection of optic nerve invasion is mandatory in children primarily enucleated for retinoblastoma to ensure a free resection margin.


To assess the accuracy of CT and MRI for the detection of postlaminar invasion in normal-size nerves.

Materials and methods

A total of 150 patients enucleated for retinoblastoma were included. Imaging data (119 CT and 46 MRI) were retrospectively reviewed and compared with histological findings. Abnormal contrast enhancement of the optic nerve was used as diagnostic criterion for invasion. The associations between postlaminar invasion and several indirect signs were also assessed. Statistical analysis was performed with the Kruskal-Wallis and Fisher exact tests.


Postlaminar invasion on histology was observed in 8% (12/150). The sensitivity, specificity, accuracy and negative and positive predictive values were 60%, 95%, 91%, 95% and 60% for MRI, and 0%, 100%, 94% and 94% (PPV not assessable) for CT, respectively. Tumour diameter was the only indirect radiological sign significantly associated with postlaminar optic nerve invasion (P=0.002).


Our results suggest that MRI is more relevant than CT for preoperative detection of optic nerve invasion in patients with retinoblastoma. Tumour diameter is the only indirect sign significantly associated with postlaminar invasion.


Retinoblastoma CT MRI Children 


  1. 1.
    Doz F, Brisse H, Stoppa-Lyonnet D et al (2004) Retinoblastoma. In: Pinkerton R, Plowman P, Pieters R (eds) Paediatric oncology. Arnold, London, pp 323–338Google Scholar
  2. 2.
    Shields CL, Meadows AT, Leahey AM et al (2004) Continuing challenges in the management of retinoblastoma with chemotherapy. Retina 24:849–862PubMedCrossRefGoogle Scholar
  3. 3.
    Shields CL, Shields JA, Baez K et al (1994) Optic nerve invasion of retinoblastoma. Metastatic potential and clinical risk factors. Cancer 73:692–698PubMedCrossRefGoogle Scholar
  4. 4.
    Khelfaoui F, Validire P, Auperin A et al (1996) Histopathologic risk factors in retinoblastoma: a retrospective study of 172 patients treated in a single institution. Cancer 77:1206–1213PubMedCrossRefGoogle Scholar
  5. 5.
    Magramm I, Abramson DH, Ellsworth RM (1989) Optic nerve involvement in retinoblastoma. Ophthalmology 96:217–222PubMedGoogle Scholar
  6. 6.
    Bellaton E, Bertozzi AI, Behar C et al (2003) Neoadjuvant chemotherapy for extensive unilateral retinoblastoma. Br J Ophthalmol 87:327–329PubMedCrossRefGoogle Scholar
  7. 7.
    John-Mikolajewski V, Messmer E, Sauerwein W et al (1987) Orbital computed tomography. Does it help in diagnosing the infiltration of choroid, sclera and/or optic nerve in retinoblastoma? Ophthalmic Paediatr Genet 8:101–104PubMedGoogle Scholar
  8. 8.
    Jacquemin C, Karcioglu ZA (1998) Detection of optic nerve involvement in retinoblastoma with enhanced computed tomography. Eye 12:179–183PubMedGoogle Scholar
  9. 9.
    Ainbinder DJ, Haik BG, Frei DF et al (1996) Gadolinium enhancement: improved MRI detection of retinoblastoma extension into the optic nerve. Neuroradiology 38:778–781PubMedCrossRefGoogle Scholar
  10. 10.
    de Graaf P, Barkhof F, Moll AC et al (2005) Retinoblastoma: MR imaging parameters in detection of tumor extent. Radiology 235:197–207PubMedCrossRefGoogle Scholar
  11. 11.
    Schueler AO, Hosten N, Bechrakis NE et al (2003) High resolution magnetic resonance imaging of retinoblastoma. Br J Ophthalmol 87:330–335PubMedCrossRefGoogle Scholar
  12. 12.
    Lemke AJ, Kazi I, Mergner U et al (2007) Retinoblastoma – MR appearance using a surface coil in comparison with histopathological results. Eur Radiol 17:49–60PubMedCrossRefGoogle Scholar
  13. 13.
    Galluzzi P, Cerase A, Hadjistilianou T et al (2003) Retinoblastoma: abnormal gadolinium enhancement of anterior segment of eyes at MR imaging with clinical and histopathologic correlation. Radiology 228:683–690PubMedCrossRefGoogle Scholar
  14. 14.
    Karim S, Clark RA, Poukens V et al (2004) Demonstration of systematic variation in human intraorbital optic nerve size by quantitative magnetic resonance imaging and histology. Invest Ophthalmol Vis Sci 45:1047–1051PubMedCrossRefGoogle Scholar
  15. 15.
    Shields JA, Shields CL, De Potter P (1992) Enucleation technique for children with retinoblastoma. J Pediatr Ophthalmol Strabismus 29:213–215PubMedGoogle Scholar
  16. 16.
    Kaste SC, Jenkins JJ III, Pratt CB et al (2000) Retinoblastoma: sonographic findings with pathologic correlation in pediatric patients. AJR 175:495–501PubMedGoogle Scholar
  17. 17.
    Finger PT, Khoobehi A, Ponce-Contreras MR et al (2002) Three dimensional ultrasound of retinoblastoma: initial experience. Br J Ophthalmol 86:1136–1138PubMedCrossRefGoogle Scholar
  18. 18.
    Finger PT, Garcia JP Jr, Pro MJ et al (2005) “C-scan” ultrasound imaging of optic nerve extension of retinoblastoma. Br J Ophthalmol 89:1225–1226PubMedCrossRefGoogle Scholar
  19. 19.
    Aerts I, Pacquement H, Doz F et al (2004) Outcome of second malignancies after retinoblastoma: a retrospective analysis of 25 patients treated at the Institut Curie. Eur J Cancer 40:1522–1529PubMedCrossRefGoogle Scholar
  20. 20.
    Kaufman LM, Mafee MF, Song CD (1998) Retinoblastoma and simulating lesions. Role of CT, MR imaging and use of Gd-DTPA contrast enhancement. Radiol Clin North Am 36:1101–1117PubMedCrossRefGoogle Scholar
  21. 21.
    Mafee MF, Goldberg MF, Greenwald MJ et al (1987) Retinoblastoma and simulating lesions: role of CT and MR imaging. Radiol Clin North Am 25:667–682PubMedGoogle Scholar
  22. 22.
    Potter PD, Shields CL, Shields JA et al (1996) The role of magnetic resonance imaging in children with intraocular tumors and simulating lesions. Ophthalmology 103:1774–1783PubMedGoogle Scholar
  23. 23.
    Smirniotopoulos JG, Bargallo N, Mafee MF (1994) Differential diagnosis of leukokoria: radiologic-pathologic correlation. Radiographics 14:1059–1079PubMedGoogle Scholar
  24. 24.
    Barkhof F, Smeets M, van der Valk P et al (1997) MR imaging in retinoblastoma. Eur Radiol 7:726–731PubMedGoogle Scholar
  25. 25.
    Gizewski ER, Wanke I, Jurklies C et al (2005) T1 Gd-enhanced compared with CISS sequences in retinoblastoma: superiority of T1 sequences in evaluation of tumour extension. Neuroradiology 47:56–61PubMedCrossRefGoogle Scholar
  26. 26.
    Brisse HJ, Lumbroso L, Freneaux PC et al (2001) Sonographic, CT, and MR imaging findings in diffuse infiltrative retinoblastoma: report of two cases with histologic comparison. AJNR 22:499–504PubMedGoogle Scholar
  27. 27.
    Breslau J, Dalley R, Tsuruda J et al (1995) Phased-array surface coil MR of the orbits and optic nerves. AJNR 16:1247–1251PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Hervé J. Brisse
    • 1
    Email author
  • Myriam Guesmi
    • 1
  • Isabelle Aerts
    • 2
  • Xavier Sastre-Garau
    • 4
  • Alexia Savignoni
    • 5
  • Livia Lumbroso-Le Rouic
    • 6
  • Laurence Desjardins
    • 6
  • François Doz
    • 2
    • 3
  • Bernard Asselain
    • 5
  • Danièle Bours
    • 5
  • Sylvia Neuenschwander
    • 1
  1. 1.Department of RadiologyInstitute CurieParisFrance
  2. 2.Department of Paediatric OncologyInstitute CurieParisFrance
  3. 3.Department of PaediatricsFaculty of MedicineParisFrance
  4. 4.Department of PathologyInstitute CurieParisFrance
  5. 5.Department of BiostatisticsInstitute CurieParisFrance
  6. 6.Department of Ocular OncologyInstitute CurieParisFrance

Personalised recommendations