Pediatric Radiology

, Volume 37, Issue 6, pp 535–543 | Cite as

Quantitative MR characterization of disease activity in the knee in children with juvenile idiopathic arthritis: a longitudinal pilot study

  • Dagnachew W. Workie
  • T. Brent Graham
  • Tal Laor
  • Akila Rajagopal
  • Kendall J. O’Brien
  • Wendy A. Bommer
  • Judy M. Racadio
  • Norah J. Shire
  • Bernard J. DardzinskiEmail author
Original Article



The development of a quantifiable and noninvasive method of monitoring disease activity and response to therapy is vital for arthritis management.


The purpose of this study was to investigate the utility of quantitative dynamic contrast-enhanced MRI (DCE-MRI) based on pharmacokinetic (PK) modeling to evaluate disease activity in the knee and correlate the results with the clinical assessment in children with juvenile idiopathic arthritis (JIA).

Materials and methods

A group of 17 children with JIA underwent longitudinal clinical and laboratory assessment and DCE-MRI of the knee at enrollment, 3 months, and 12 months. A PK model was employed using MRI signal enhancement data to give three parameters, Ktrans (min−1), kep (min−1), and Vp and to calculate synovial volume.


The PK parameters, synovial volumes, and clinical and laboratory assessments in most children were significantly decreased (P < 0.05) at 12 months when compared to the enrollment values. There was excellent correlation between the PK and synovial volume and the clinical and laboratory assessments. Differences in MR and clinical parameter values in individual subjects illustrate persistent synovitis when in clinical remission.


A decrease in PK parameter values obtained from DCE-MRI in children with JIA likely reflects diminution of disease activity. This technique may be used as an objective follow-up measure of therapeutic efficacy in patients with JIA. MR imaging can detect persistent synovitis in patients considered to be in clinical remission.


Juvenile idiopathic arthritis Synovial volume Dynamic contrast-enhanced MRI (DCE-MRI) Pharmacokinetic modeling 



B.J. Dardzinski, T. Laor, and T.B. Graham acknowledge funding from the Arthritis Foundation, a Cincinnati Children’s Hospital Trustees grant, and NIH grants P30 AR47363-01 and P60 AR47784-01.


  1. 1.
    Brewer EJ Jr, Bass J, Baum J et al (1977) Current proposed revision of JRA criteria. JRA Criteria Subcommittee of the Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Section of The Arthritis Foundation. Arthritis Rheum 20:195–199PubMedGoogle Scholar
  2. 2.
    Firestein GS (1999) Starving the synovium: angiogenesis and inflammation in rheumatoid arthritis. J Clin Invest 103:3–4PubMedCrossRefGoogle Scholar
  3. 3.
    Cimmino MA, Innocenti S, Livrone F et al (2003) Dynamic gadolinium-enhanced magnetic resonance imaging of the wrist in patients with rheumatoid arthritis can discriminate active from inactive disease. Arthritis Rheum 48:1207–1213PubMedCrossRefGoogle Scholar
  4. 4.
    van Rossum MA, Zwinderman AH, Boers M et al (2003) Radiologic features in juvenile idiopathic arthritis: a first step in the development of a standardized assessment method. Arthritis Rheum 48:507–515PubMedCrossRefGoogle Scholar
  5. 5.
    Wallace CA, Levinson JE (1991) Juvenile rheumatoid arthritis: outcome and treatment for the 1990s. Rheum Dis Clin North Am 17:891–905PubMedGoogle Scholar
  6. 6.
    Ostergaard M, Hansen M, Stoltenberg M et al (1999) Magnetic resonance imaging-determined synovial membrane volume as a marker of disease activity and a predictor of progressive joint destruction in the wrists of patients with rheumatoid arthritis. Arthritis Rheum 42:918–929PubMedCrossRefGoogle Scholar
  7. 7.
    Gaffney K, Cookson J, Blades S et al (1998) Quantitative assessment of the rheumatoid synovial microvascular bed by gadolinium-DTPA enhanced magnetic resonance imaging. Ann Rheum Dis 57:152–157PubMedCrossRefGoogle Scholar
  8. 8.
    Forslind K, Larsson EM, Johansson A et al (1997) Detection of joint pathology by magnetic resonance imaging in patients with early rheumatoid arthritis. Br J Rheumatol 36:683–688PubMedCrossRefGoogle Scholar
  9. 9.
    Reiser MF, Bongartz GP, Erlemann R et al (1989) Gadolinium-DTPA in rheumatoid arthritis and related diseases: first results with dynamic magnetic resonance imaging. Skeletal Radiol 18:591–597PubMedCrossRefGoogle Scholar
  10. 10.
    Ostergaard M, Gideon P, Henriksen O et al (1994) Synovial volume – a marker of disease severity in rheumatoid arthritis? Quantification by MRI. Scand J Rheumatol 23:197–202PubMedGoogle Scholar
  11. 11.
    Gaffney K, Cookson J, Blake D et al (1995) Quantification of rheumatoid synovitis by magnetic resonance imaging. Arthritis Rheum 38:1610–1617PubMedCrossRefGoogle Scholar
  12. 12.
    Ostergaard M, Stoltenberg M, Lovgreen-Nielsen P et al (1998) Quantification of synovitis by MRI: correlation between dynamic and static gadolinium-enhanced magnetic resonance imaging and microscopic and macroscopic signs of synovial inflammation. Magn Reson Imaging 16:743–754PubMedCrossRefGoogle Scholar
  13. 13.
    Reece RJ, Kraan MC, Radjenovic A et al (2002) Comparative assessment of leflunomide and methotrexate for the treatment of rheumatoid arthritis, by dynamic enhanced magnetic resonance imaging. Arthritis Rheum 46:366–372PubMedCrossRefGoogle Scholar
  14. 14.
    Larsson HB, Stubgaard M, Frederiksen JL et al (1990) Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors. Magn Reson Med 16:117–131PubMedCrossRefGoogle Scholar
  15. 15.
    Zhu XP, Li KL, Kamaly-Asl ID et al (2000) Quantification of endothelial permeability, leakage space, and blood volume in brain tumors using combined T1 and T2* contrast-enhanced dynamic MR imaging. J Magn Reson Imaging 11:575–585PubMedCrossRefGoogle Scholar
  16. 16.
    Roberts HC, Roberts TP, Bollen AW et al (2001) Correlation of microvascular permeability derived from dynamic contrast-enhanced MR imaging with histologic grade and tumor labeling index: a study in human brain tumors. Acad Radiol 8:384–391PubMedCrossRefGoogle Scholar
  17. 17.
    Tofts PS, Berkowitz B, Schnall MD (1995) Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumors using a permeability model. Magn Reson Med 33:564–568PubMedCrossRefGoogle Scholar
  18. 18.
    Daldrup HE, Shames DM, Husseini W et al (1998) Quantification of the extraction fraction for gadopentetate across breast cancer capillaries. Magn Reson Med 40:537–543PubMedCrossRefGoogle Scholar
  19. 19.
    Port RE, Knopp MV, Hoffmann U et al (1999) Multicompartment analysis of gadolinium chelate kinetics: blood-tissue exchange in mammary tumors as monitored by dynamic MR imaging. J Magn Reson Imaging 10:233–241PubMedCrossRefGoogle Scholar
  20. 20.
    Brix G, Henze M, Knopp MV et al (2001) Comparison of pharmacokinetic MRI and [18F] fluorodeoxyglucose PET in the diagnosis of breast cancer: initial experience. Eur Radiol 11:2058–2070PubMedCrossRefGoogle Scholar
  21. 21.
    Larsson HB, Fritz-Hansen T, Rostrup E et al (1996) Myocardial perfusion modeling using MRI. Magn Reson Med 35:716–726PubMedCrossRefGoogle Scholar
  22. 22.
    Fritz-Hansen T, Rostrup E, Sondergaard L et al (1998) Capillary transfer constant of Gd-DTPA in the myocardium at rest and during vasodilation assessed by MRI. Magn Reson Med 40:922–929PubMedCrossRefGoogle Scholar
  23. 23.
    Workie D, Dardzinski B, Graham T et al (2004) Quantification of dynamic contrast-enhanced MR imaging of the knee in children with juvenile rheumatoid arthritis based on pharmacokinetic modeling. Magn Reson Imaging 22:1201–1210PubMedCrossRefGoogle Scholar
  24. 24.
    Workie D, Dardzinski B, Laor T et al (2004) Quantification of DCE-MRI of knees of children with JRA: using an arterial input function extracted from popliteal artery enhancement. Proceedings of the 12th International Society for Magnetic Resonance in Medicine (ISMRM). 15–21 May 2004, Kyoto, JapanGoogle Scholar
  25. 25.
    Workie DW, Dardzinski BJ (2005) Quantifying dynamic contrast-enhanced MRI of the knee in children with juvenile rheumatoid arthritis using an arterial input function (AIF) extracted from popliteal artery enhancement, and the effect of the choice of the AIF on the kinetic parameters. Magn Reson Med 54:560–568PubMedCrossRefGoogle Scholar
  26. 26.
    Petty RE, Southwood TR, Manners P et al (2004) International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol 31:390–392PubMedGoogle Scholar
  27. 27.
    Brewer EJ Jr, Giannini EH (1982) Standard methodology for Segment I, II, and III Pediatric Rheumatology Collaborative Study Group studies. I. Design. J Rheumatol 9:109–113PubMedGoogle Scholar
  28. 28.
    Singh G, Athreya BH, Fries JF et al (1994) Measurement of health status in children with juvenile rheumatoid arthritis. Arthritis Rheum 37:1761–1769PubMedCrossRefGoogle Scholar
  29. 29.
    Giannini EH, Ruperto N, Ravelli A et al (1997) Preliminary definition of improvement in juvenile arthritis. Arthritis Rheum 40:1202–1209PubMedGoogle Scholar
  30. 30.
    Ruperto N, Ravelli A, Murray KJ et al (2003) Preliminary core sets of measures for disease activity and damage assessment in juvenile systemic lupus erythematosus and juvenile dermatomyositis. Rheumatology (Oxford) 42:1452–1459CrossRefGoogle Scholar
  31. 31.
    Dardzinski BJ, Schmithorst VJ, Grahm TB (2002) Dynamic contrast enhancement patterns in the knee of children with JRA. Proceedings of the 10th ISMRM Annual Meeting. Honolulu, HawaiiGoogle Scholar
  32. 32.
    Dardzinski BJ, Schmithorst VJ, Mosher TJ (1999) Entropy mapping of articular cartilage. Proceedings of the 7th ISMRM Annual Meeting. Philadelphia, PAGoogle Scholar
  33. 33.
    Everitt BS, Landau S, Leese M (2001) Cluster analysis, 4th edn. Arnold, LondonGoogle Scholar
  34. 34.
    Hartigan JA (1975) Clustering algorithms. Wiley, New YorkGoogle Scholar
  35. 35.
    Gylys-Morin VM, Graham TB, Blebea JS et al (2001) Knee in early juvenile rheumatoid arthritis: MR imaging findings. Radiology 220:696–706PubMedCrossRefGoogle Scholar
  36. 36.
    Weinmann HJ, Brasch RC, Press WR et al (1984) Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. AJR 142:619–624PubMedGoogle Scholar
  37. 37.
    Simkin PA (1979) Synovial permeability in rheumatoid arthritis. Arthritis Rheum 22:689–696PubMedCrossRefGoogle Scholar
  38. 38.
    Levick JR (1981) Permeability of rheumatoid and normal human synovium to specific plasma proteins. Arthritis Rheum 24:1550–1560PubMedCrossRefGoogle Scholar
  39. 39.
    Ostergaard M, Ejbjerg B (2004) Magnetic resonance imaging of the synovium in rheumatoid arthritis. Semin Musculoskelet Radiol 8:287–299PubMedCrossRefGoogle Scholar
  40. 40.
    Nistala K, Babar J, Johnson K et al (2006) Clinical assessment and core outcome variables are poor predictors of hip arthritis diagnosed by MRI in juvenile idiopathic arthritis. Rheumatology (Oxford) DOI  10.1093/rheumatology/kel401
  41. 41.
    Brown AK, Quinn MA, Karim Z et al (2006) Presence of significant synovitis in rheumatoid arthritis patients with disease-modifying antirheumatic drug-induced clinical remission: evidence from an imaging study may explain structural progression. Arthritis Rheum 54:3761–3773PubMedCrossRefGoogle Scholar
  42. 42.
    Molenaar ET, Voskuyl AE, Dinant HJ et al (2004) Progression of radiologic damage in patients with rheumatoid arthritis in clinical remission. Arthritis Rheum 50:36–42PubMedCrossRefGoogle Scholar
  43. 43.
    Graham B, Detsky AS (2001) The application of decision analysis to the surgical treatment of early osteoarthritis of the wrist. J Bone Joint Surg Br 83:650–654PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Dagnachew W. Workie
    • 1
    • 2
  • T. Brent Graham
    • 3
  • Tal Laor
    • 4
    • 5
  • Akila Rajagopal
    • 2
  • Kendall J. O’Brien
    • 2
  • Wendy A. Bommer
    • 2
  • Judy M. Racadio
    • 4
    • 5
  • Norah J. Shire
    • 6
    • 7
  • Bernard J. Dardzinski
    • 2
    • 4
    • 5
    Email author
  1. 1.Department of PhysicsUniversity of CincinnatiCincinnatiUSA
  2. 2.Imaging Research CenterCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  3. 3.Division of RheumatologyCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  4. 4.Department of PediatricsCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  5. 5.Department of RadiologyCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  6. 6.Division of Epidemiology and BiostatisticsUniversity of CincinnatiCincinnatiUSA
  7. 7.Division of Digestive DiseasesUniversity of CincinnatiCincinnatiUSA

Personalised recommendations