Advertisement

Utility of Pulmonary Artery Acceleration Time to Estimate Systolic Pulmonary Artery Pressure in Neonates and Young Infants

  • Bassel Mohammad NijresEmail author
  • John Bokowski
  • Lamya Mubayed
  • Sabih H. Jafri
  • Alan T. Davis
  • Ra-id Abdulla
Original Article

Abstract

Transthoracic echocardiogram (TTE) is commonly used to screen for pulmonary hypertension (PHTN) in neonates and young infants. However, in the absence of sufficient tricuspid regurgitation (TR), a ventricular septal defect (VSD), or a patent ductus arteriosus (PDA), the estimation of systolic pulmonary artery pressure (SPAP) becomes challenging. Pulmonary artery acceleration time (PAAT) is an alternate parameter that is easy to obtain in almost all patients and does not require the presence of tricuspid valvar regurgitation or an anatomical cardiac defect. We sought to examine the correlation of PAAT with estimated SPAP by TTE and create an equation to estimate the SPAP using PAAT. We performed a retrospective review of TTEs performed on neonates and young infants (4 months of age or younger) at our institution between April 2017 and December 2018, along with the corresponding medical records. We included TTEs that provided estimation for SPAP and at least one PAAT measurement. During the study period, 138 TTEs performed on 82 patients met the inclusion criteria. Strong correlation was delineated between PAAT and SPAP estimated by the maximum velocity of tricuspid valve regurgitation Doppler, correlation coefficient (r) = − 0.83. Moderate correlation was detected between PAAT and SPAP estimated by PDA Doppler, r = − 0.66. Utilizing the following equation “SPAP = 82.6 − 0.58 × PAAT + RA mean pressure”, PAAT can be used to estimate SPAP in neonates and young infants. PAAT can be used as an alternative to TR jet to assess SPAP when the latter is absent or insufficient. Further studies are needed to verify the accuracy of this equation.

Keywords

Pulmonary hypertension Transthoracic echocardiogram Pulmonary artery acceleration time 

Notes

Funding

There is no funding associated with this study.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest related to this study.

Ethical Approval

This study was agreed to be conducted by Rush University Institutional Review Board.

References

  1. 1.
    Gill AB, Weindling AM (1993) Pulmonary artery pressure changes in the very low birthweight infant developing chronic lung disease. Arch Dis Child 68:303–307PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Gill AB, Weindling AM (1995) Raised pulmonary artery pressure in very low birthweight infants requiring supplemental oxygen at 36 weeks after conception. Arch Dis Child Fetal Neonatal Ed 72:F20–F22PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Taylor CJ, Derrick G, McEwan A, Haworth SG, Sury MR (2007) Risk of cardiac catheterization under anaesthesia in children with pulmonary hypertension. Br J Anaesth 98:657–661PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Carmosino MJ, Friesen RH, Doran A, Ivy DD (2007) Perioperative complications in children with pulmonary hypertension undergoing noncardiac surgery or cardiac catheterization. Anesth Analg 104:521–527PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Williams GD, Maan H, Ramamoorthy C, Kamra K, Bratton SL, Bair E, Kuan CC, Hammer GB, Feinstein JA (2010) Perioperative complications in children with pulmonary hypertension undergoing general anesthesia with ketamine. Paediatr Anaesth 20:28–37PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Jayaram N, Spertus JA, Kennedy KF, Vincent R, Martin GR, Curtis JP, Nykanen D, Moore PM, Bergersen L (2017) Modeling major adverse outcomes of pediatric and adult patients with congenital heart disease undergoing cardiac catheterization: observations from the NCDR IMPACT Registry (National Cardiovascular Data Registry Improving Pediatric and Adult Congenital Treatment). Circulation 136:2009–2019PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Ge Z, Zhang Y, Kang W, Fan D, Ji X, Duran C (1993) Noninvasive evaluation of right ventricular and pulmonary artery systolic pressures in patients with ventricular septal defects: simultaneous study of Doppler and catheterization data. Am Heart J 125:1073–1081PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Marx GR, Allen HD, Goldberg SJ (1985) Doppler echocardiographic estimation of systolic pulmonary artery pressure in pediatric patients with interventricular communications. J Am Coll Cardiol 6:1132–1137PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Musewe NN, Poppe D, Smallhorn JF, Hellman J, Whyte H, Smith B, Freedom RM (1990) Doppler echocardiographic measurement of pulmonary artery pressure from ductal Doppler velocities in the newborn. J Am Coll Cardiol 15:446–456PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Bhat R, Salas AA, Foster C, Carlo WA, Ambalavanan N (2012) Prospective analysis of pulmonary hypertension in extremely low birth weight infants. Pediatrics 129:e682–e689PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Yared K, Noseworthy P, Weyman AE, McCabe E, Picard MH, Baggish AL (2011) Pulmonary artery acceleration time provides an accurate estimate of systolic pulmonary arterial pressure during transthoracic echocardiography. J Am Soc Echocardiogr 24:687–692PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Hinderliter AL, Willis PW 4th, Long WA, Clarke WR, Ralph D, Caldwell EJ, Williams W, Ettinger NA, Hill NS, Summer WR, de Boisblanc B, Koch G, Li S, Clayton LM, Jobsis, MM, Crow JW, PPH Study Group (2003) Frequency and severity of tricuspid regurgitation determined by Doppler echocardiography in primary pulmonary hypertension. Am J Cardiol 91(1033–7):A9Google Scholar
  13. 13.
    Cowie B, Kluger R, Rex S, Missant C (2016) The relationship between pulmonary artery acceleration time and mean pulmonary artery pressure in patients undergoing cardiac surgery: An observational study. Eur J Anaesthesiol 33:28–33PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Kitabatake A, Inoue M, Asao M, Masuyama T, Tanouchi J, Morita T, Mishima M, Uematsu M, Shimazu T, Hori M, Abe H (1983) Noninvasive evaluation of pulmonary hypertension by a pulsed Doppler technique. Circulation 68:302–309PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Levy PT, Patel MD, Groh G, Choudhry S, Murphy J, Holland MR, Hamvas A, Grady MR, Singh GK (2016) Pulmonary artery acceleration time provides a reliable estimate of invasive pulmonary hemodynamics in children. J Am Soc Echocardiogr 29:1056–1065PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Kawahito S, Kitahata H, Tanaka K, Nozaki J, Oshita S (2001) Pulmonary arterial pressure can be estimated by transesophageal pulsed doppler echocardiography. Anesth Analg 92:1364–1369PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Steurer MA, Jelliffe-Pawlowski LL, Baer RJ, Partridge JC, Rogers EE, Keller RL (2017) Persistent Pulmonary Hypertension of the Newborn in Late Preterm and Term Infants in California. Pediatrics.  https://doi.org/10.1542/peds.2016-1165 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Fitzgerald D, Evans N, Van Asperen P, Henderson-Smart D (1994) Subclinical persisting pulmonary hypertension in chronic neonatal lung disease. Arch Dis Child Fetal Neonatal Ed 70:F118–F122PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Benatar A, Clarke J, Silverman M (1995) Pulmonary hypertension in infants with chronic lung disease: non-invasive evaluation and short term effect of oxygen treatment. Arch Dis Child Fetal Neonatal Ed 72:F14–F19PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Farstad T, Brockmeier F, Bratlid D (1995) Cardiopulmonary function in premature infants with bronchopulmonary dysplasia–a 2-year follow up. Eur J Pediatr 154:853–858PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Abman SH, Wolfe RR, Accurso FJ, Koops BL, Bowman CM, Wiggins JW Jr (1985) Pulmonary vascular response to oxygen in infants with severe bronchopulmonary dysplasia. Pediatrics 75:80–84PubMedPubMedCentralGoogle Scholar
  22. 22.
    Berman W Jr, Yabek SM, Dillon T, Burstein R, Corlew S (1982) Evaluation of infants with bronchopulmonary dysplasia using cardiac catheterization. Pediatrics 70:708–712PubMedPubMedCentralGoogle Scholar
  23. 23.
    Goodman G, Perkin RM, Anas NG, Sperling DR, Hicks DA, Rowen M (1988) Pulmonary hypertension in infants with bronchopulmonary dysplasia. J Pediatr 112:67–72PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Douwes JM, van Loon RL, Hoendermis ES, Vonk-Noordegraaf A, Roofthooft MT, Talsma MD, Hillege HL, Berger RM (2011) Acute pulmonary vasodilator response in paediatric and adult pulmonary arterial hypertension: occurrence and prognostic value when comparing three response criteria. Eur Heart J 32:3137–3146PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Apitz C, Hansmann G, Schranz D (2016) Hemodynamic assessment and acute pulmonary vasoreactivity testing in the evaluation of children with pulmonary vascular disease. Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK. Heart 102 Suppl 2: ii23–9.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Beghetti M, Schulze-Neick I, Berger RM, Ivy DD, Bonnet D, Weintraub RG, Saji T, Yung D, Mallory GB, Geiger R, Berger JT, Barst RJ, Humpl T, Investigators TOPP (2016) Haemodynamic characterisation and heart catheterisation complications in children with pulmonary hypertension: Insights from the Global TOPP Registry (tracking outcomes and practice in paediatric pulmonary hypertension). Int J Cardiol 203:325–330PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    O'Byrne ML, Kennedy KF, Kanter JP, Berger JT, Glatz AC (2018) Risk Factors for major early adverse events related to cardiac catheterization in children and young adults with pulmonary hypertension: an analysis of data from the IMPACT (Improving Adult and Congenital Treatment) Registry. J Am Heart Assoc.  https://doi.org/10.1161/JAHA.117.008142 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Stoll BJ, Hansen NI, Bell EF, Shankaran, S, Laptook, AR, Walsh MC, Hale EC, Newman NS, Schibler, K, Carlo WA, Kennedy KA, Poindexter BB, Finer NN, Ehrenkranz, RA, Duara, S, Sanchez PJ, O'Shea TM, Goldberg RN, Van, Meurs, KP, Faix, RG, Phelps DL, Frantz ID,3rd, Watterberg, KL, Saha, S, Das A, Higgins RD, Eunice Kennedy Shriver National Institute of Child Health, and Human Development Neonatal Research Network (2010) Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics 126:443–456PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Subhedar NV, Shaw NJ (2000) Changes in pulmonary arterial pressure in preterm infants with chronic lung disease. Arch Dis Child Fetal Neonatal Ed 82:F243–F247PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Nagiub M, Lee S, Guglani L (2015) Echocardiographic assessment of pulmonary hypertension in infants with bronchopulmonary dysplasia: systematic review of literature and a proposed algorithm for assessment. Echocardiography 32:819–833PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Mourani PM, Sontag MK, Younoszai A, Ivy DD, Abman SH (2008) Clinical utility of echocardiography for the diagnosis and management of pulmonary vascular disease in young children with chronic lung disease. Pediatrics 121:317–325PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Burnard ED, James LS (1963) Atrial pressures and cardiac size in the newborn infant. Relationships with degree of birth asphyxia and size of placental transfusion. J Pediatr 62:815–826PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Zellers T, Gutgesell HP (1989) Noninvasive estimation of pulmonary artery pressure. J Pediatr 114:735–741PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Yock PG, Popp RL (1984) Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation. Circulation 70:657–662PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Amsallem M, Sternbach JM, Adigopula S, Kobayashi Y, Vu TA, Zamanian R, Liang D, Dhillon G, Schnittger I, McConnell MV, Haddad F (2016) Addressing the Controversy of Estimating Pulmonary Arterial Pressure by Echocardiography. J Am Soc Echocardiogr 29:93–102PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    van Riel AC, Opotowsky AR, Santos M, Rivero JM, Dhimitri A, Mulder BJ, Bouma BJ, Landzberg MJ, Waxman AB, Systrom DM, Shah AM (2017) Accuracy of echocardiography to estimate pulmonary artery pressures with exercise: a simultaneous invasive-noninvasive comparison. Circ Cardiovasc Imaging.  https://doi.org/10.1161/CIRCIMAGING.116.005711 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Arcasoy SM, Christie JD, Ferrari VA, Sutton MS, Zisman DA, Blumenthal NP, Pochettino A, Kotloff RM (2003) Echocardiographic assessment of pulmonary hypertension in patients with advanced lung disease. Am J Respir Crit Care Med 167:735–740PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Haddad F, Zamanian R, Beraud AS, Schnittger I, Feinstein J, Peterson T, Yang P, Doyle R, Rosenthal D (2009) A novel non-invasive method of estimating pulmonary vascular resistance in patients with pulmonary arterial hypertension. J Am Soc Echocardiogr 22:523–529PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Koestenberger M, Grangl G, Avian A, Gamillscheg A, Grillitsch M, Cvirn G, Burmas A, Hansmann G (2017) Normal reference values and z scores of the pulmonary artery acceleration time in children and its importance for the assessment of pulmonary hypertension. Circ Cardiovasc Imaging.  https://doi.org/10.1161/CIRCIMAGING.116.005336 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kosturakis D, Goldberg SJ, Allen HD, Loeber C (1984) Doppler echocardiographic prediction of pulmonary arterial hypertension in congenital heart disease. Am J Cardiol 53:1110–1115PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Levy PT, Patel MD, Choudhry S, Hamvas A, Singh GK (2018) Evidence of echocardiographic markers of pulmonary vascular disease in asymptomatic infants born preterm at one year of age. J Pediatr 197:48–56.e2PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Cambiaso-Daniel J, Rontoyanni VG, Foncerrada G, Nguyen A, Capek KD, Wurzer P, Lee JO, Hundeshagen G, Voigt CD, Branski LK, Finnerty CC, Herndon DN (2018) Correlation between invasive and noninvasive blood pressure measurements in severely burned children. Burns 44:1787–1791PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Joffe R, Duff J, Garcia Guerra G, Pugh J, Joffe AR (2016) The accuracy of blood pressure measured by arterial line and non-invasive cuff in critically ill children. Crit Care 20: 177–016–1354-x.Google Scholar
  44. 44.
    Takci S, Yigit S, Korkmaz A, Yurdakok M (2012) Comparison between oscillometric and invasive blood pressure measurements in critically ill premature infants. Acta Paediatr 101:132–135PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Dabestani A, Mahan G, Gardin JM, Takenaka K, Burn C, Allfie A, Henry WL (1987) Evaluation of pulmonary artery pressure and resistance by pulsed Doppler echocardiography. Am J Cardiol 59:662–668PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Tossavainen E, Soderberg S, Gronlund C, Gonzalez M, Henein MY, Lindqvist P (2013) Pulmonary artery acceleration time in identifying pulmonary hypertension patients with raised pulmonary vascular resistance. Eur Heart J Cardiovasc Imaging 14:890–897PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Chan KL, Currie PJ, Seward JB, Hagler DJ, Mair DD, Tajik AJ (1987) Comparison of three Doppler ultrasound methods in the prediction of pulmonary artery pressure. J Am Coll Cardiol 9:549–554PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Section of Pediatric Cardiology, Department of PediatricsRush University Medical CenterChicagoUSA
  2. 2.Division of Pediatric Cardiology, Department of Pediatrics, Baylor College of MedicineTexas Children’s HospitalHoustonUSA
  3. 3.Department of Internal MedicineUniversity of Cincinnati Medical CenterCincinnatiUSA
  4. 4.Spectrum Health OME Scholarly Activity SupportGrand RapidsUSA
  5. 5.Section of Pediatric Cardiology, Department of PediatricsAnn & Robert H. Lurie Children’s HospitalChicagoUSA

Personalised recommendations