Pediatric Cardiology

, Volume 40, Issue 6, pp 1266–1274 | Cite as

Impact of Left Atrial Decompression on Patient Outcomes During Pediatric Venoarterial Extracorporeal Membrane Oxygenation: A Case–Control Study

  • Fares Alghanem
  • Sowmya Balasubramanian
  • Jeffrey D. ZampiEmail author
Original Article


Left heart distension during venoarterial extracorporeal membrane oxygenation (VA ECMO) often necessitates decompression to facilitate myocardial recovery and prevent life-threatening complications. The objectives of this study were to compare clinical outcomes between patients who did and did not undergo left atrial (LA) decompression, quantify decompression efficacy, and identify risk factors for development of left heart distension. This was a single-center retrospective case–control study. Pediatric VA ECMO patients who underwent LA decompression from June 2004 to March 2016 were identified, and a control cohort of VA ECMO patients who did not undergo LA decompression were matched based on diagnosis, extracorporeal cardiopulmonary resuscitation, and age. Among 194 VA ECMO cases, 21 (11%) underwent LA decompression. Compared to the control cohort, patients with decompression had longer hospital length of stay (60 ± 55 vs. 27 ± 23 days, p = 0.012), but similar in-hospital mortality (29% vs. 38%, p = 0.513). Decompression successfully decreased mean LA pressure (24 ± 11 to 14 ± 4 mmHg, p = 0.022) and LA:RA pressure gradient (10 ± 7 to 0 ± 1 mmHg, p = 0.011). No significant differences in early quantitative measures of cardiac function were observed between cases and controls to identify risk factors for left heart distension. Despite higher qualitative risk for impaired cardiac recovery, patients who underwent LA decompression had comparable outcomes to those who did not. Given that traditional quantitative measures of cardiac function are insufficient to predict development of eventual left heart distension, a combination of clinical history, radiographic findings, hemodynamic monitoring, and laboratory markers should be used during the evaluation and management of these patients.


Extracorporeal membrane oxygenation Decompression Distension Pediatric 


Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflicts.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Waiver of informed consent was granted by the Institutional Review Board for this study.


  1. 1.
    Brogan TV, Lequier L, Lorusso R, MacLaren G, Peek G (2017) Extracorporeal life support: the ELSO red book. Extracorporeal Life Support Organization, Ann ArborGoogle Scholar
  2. 2.
    Barbaro RP, Paden ML, Guner YS, Raman L, Ryerson LM, Alexander P et al (2017) Pediatric extracorporeal life support organization registry international report 2016. ASAIO J 63(4):456PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Burkhoff D, Sayer G, Doshi D, Uriel N (2015) Hemodynamics of mechanical circulatory support. J Am Coll Cardiol 66(23):2663–2674PubMedCrossRefGoogle Scholar
  4. 4.
    Aissaoui N, Guerot E, Combes A, Delouche A, Chastre J, Leprince P et al (2012) Two-dimensional strain rate and Doppler tissue myocardial velocities: analysis by echocardiography of hemodynamic and functional changes of the failed left ventricle during different degrees of extracorporeal life support. J Am Soc Echocardiogr 25(6):632–640PubMedCrossRefGoogle Scholar
  5. 5.
    Ostadal P, Mlcek M, Kruger A, Hala P, Lacko S, Mates M et al (2015) Increasing venoarterial extracorporeal membrane oxygenation flow negatively affects left ventricular performance in a porcine model of cardiogenic shock. J Transl Med 13(1):266PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Hireche-Chikaoui H, Grübler MR, Bloch A, Windecker S, Bloechlinger S, Hunziker L (2018) Nonejecting hearts on femoral veno-arterial extracorporeal membrane oxygenation: aortic root blood stasis and thrombus formation—a case series and review of the literature. Crit Care Med 46(5):e459–e464PubMedCrossRefGoogle Scholar
  7. 7.
    Williams B, Bernstein W (2016) Review of venoarterial extracorporeal membrane oxygenation and development of intracardiac thrombosis in adult cardiothoracic patients. J Extra-Corpor Technol 48(4):162PubMedPubMedCentralGoogle Scholar
  8. 8.
    Rupprecht L, Flörchinger B, Schopka S, Schmid C, Philipp A, Lunz D et al (2013) Cardiac decompression on extracorporeal life support: a review and discussion of the literature. ASAIO J 59(6):547–553PubMedCrossRefGoogle Scholar
  9. 9.
    Alkhouli M, Narins CR, Lehoux J, Knight PA, Waits B, Ling FS (2016) Percutaneous decompression of the left ventricle in cardiogenic shock patients on venoarterial extracorporeal membrane oxygenation. J Card Surg 31(3):177–182PubMedCrossRefGoogle Scholar
  10. 10.
    Baruteau A-E, Barnetche T, Morin L, Jalal Z, Boscamp NS, Le Bret E et al (2018) Percutaneous balloon atrial septostomy on top of venoarterial extracorporeal membrane oxygenation results in safe and effective left heart decompression. Eur Heart J: Acute Cardiovasc Care 7(1):70–79Google Scholar
  11. 11.
    Donker DW, Brodie D, Henriques JP, Broomé M (2018) Left ventricular unloading during veno-arterial ECMO: a review of percutaneous and surgical unloading interventions. Perfusion 2018:0267659118794112Google Scholar
  12. 12.
    Koenig PR, Ralston MA, Kimball TR, Meyer RA, Daniels SR, Schwartz DC (1993) Balloon atrial septostomy for left ventricular decompression in patients receiving extracorporeal membrane oxygenation for myocardial failure. J Pediatr 122(6):S95–S99PubMedCrossRefGoogle Scholar
  13. 13.
    Meani P, Gelsomino S, Natour E, Johnson DM, Rocca HPBL, Pappalardo F et al (2017) Modalities and effects of left ventricle unloading on extracorporeal life support: a review of the current literature. Eur J Heart Fail 19:84–91PubMedCrossRefGoogle Scholar
  14. 14.
    Soleimani B, Pae W (2012) anagement of left ventricular distension during peripheral extracorporeal membrane oxygenation for cardiogenic shock. Perfusion 27(4):326–331PubMedCrossRefGoogle Scholar
  15. 15.
    Eastaugh LJ, Thiagarajan RR, Darst JR, McElhinney DB, Lock JE, Marshall AC (2015) Percutaneous left atrial decompression in patients supported with extracorporeal membrane oxygenation for cardiac disease. Pediatr Crit Care Med 16(1):59–65PubMedCrossRefGoogle Scholar
  16. 16.
    Hacking DF, Best D, d'Udekem Y, Brizard CP, Konstantinov IE, Millar J et al (2015) Elective decompression of the left ventricle in pediatric patients may reduce the duration of venoarterial extracorporeal membrane oxygenation. Artif Organs 39(4):319–326PubMedCrossRefGoogle Scholar
  17. 17.
    Kotani Y, Chetan D, Rodrigues W, Sivarajan VB, Gruenwald C, Guerguerian AM et al (2013) Left atrial decompression during venoarterial extracorporeal membrane oxygenation for left ventricular failure in children: current strategy and clinical outcomes. Artif Organs 37(1):29–36PubMedCrossRefGoogle Scholar
  18. 18.
    Zampi JD, Alghanem F, Yu S, Callahan R, Curzon CL, Delaney JW et al (2019) Relationship between time to left atrial decompression and outcomes in Patients Receiving venoarterial extracorporeal membrane oxygenation support: a multicenter pediatric interventional cardiology early-career society study. Pediatr Crit Care Med. PubMedCrossRefGoogle Scholar
  19. 19.
    Gaies MG, Jeffries HE, Niebler RA, Pasquali SK, Donohue JE, Yu S et al (2014) Vasoactive-Inotropic Score (VIS) is associated with outcome after infant cardiac surgery: An analysis from the pediatric cardiac critical care consortium (PC4) and virtual PICU system registries. Pediatr Crit Care Med 15(6):529PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Lopez L, Colan SD, Frommelt PC, Ensing GJ, Kendall K, Younoszai AK et al (2010) Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr 23(5):465–495PubMedCrossRefGoogle Scholar
  21. 21.
    Haldane J (1940) The mean and variance of the moments of chi-squaredwhen used as a test of homogeneity, when expectations are small. Biometrika 29:133–134Google Scholar
  22. 22.
    Anscombe FJ (1956) On estimating binomial response relations. Biometrika 43(3/4):461–464CrossRefGoogle Scholar
  23. 23.
    Nasr VG, Raman L, Barbaro RP, Guner Y, Tonna J, Ramanathan K et al (2018) Highlights from the extracorporeal life support organization registry: 2006–2017. ASAIO J. CrossRefGoogle Scholar
  24. 24.
    Russo JJ, Aleksova N, Pitcher I, Couture E, Parlow S, Faraz M et al (2019) Left ventricular unloading during extracorporeal membrane oxygenation in patients with cardiogenic shock. J Am Coll Cardiol 73(6):654–662PubMedCrossRefGoogle Scholar
  25. 25.
    Ellis K, Ziada KM, Vivekananthan D, Latif AA, Shaaraoui M, Martin D et al (2006) Transthoracic echocardiographic predictors of left atrial appendage thrombus. Am J Cardiol 97(3):421–425PubMedCrossRefGoogle Scholar
  26. 26.
    Truby LK, Takeda K, Mauro C, Yuzefpolskaya M, Garan AR, Kirtane AJ et al (2017) Incidence and implications of left ventricular distention during venoarterial extracorporeal membrane oxygenation support. ASAIO J 63(3):257–265PubMedCrossRefGoogle Scholar
  27. 27.
    Bhatia M, Kumar PA (2019) Pro: venoarterial extracorporeal membrane oxygenation should always include placement of a left ventricular vent. J Cardiothorac Vasc Anesth 33(4):1159–1162PubMedCrossRefGoogle Scholar
  28. 28.
    Ma C, Tolpin D, Anton J (2019) Con: patients receiving venoarterial extracorporeal membrane oxygenation should not always have a left ventricular vent placed. J Cardiothorac Vasc Anesth 33(4):1163–1165PubMedCrossRefGoogle Scholar
  29. 29.
    Thiagarajan RR, Laussen PC, Rycus PT, Bartlett RH, Bratton SL (2007) Extracorporeal membrane oxygenation to aid cardiopulmonary resuscitation in infants and children. Circulation 116(15):1693–1700PubMedCrossRefGoogle Scholar
  30. 30.
    Bailly DK, Reeder RW, Zabrocki LA, Hubbard AM, Wilkes J, Bratton SL et al (2017) Development and validation of a score to predict mortality in children undergoing extracorporeal membrane oxygenation for respiratory failure: pediatric pulmonary rescue with extracorporeal membrane oxygenation prediction score. Crit Care Med 45(1):e58–e66CrossRefGoogle Scholar
  31. 31.
    Schmidt M, Bailey M, Sheldrake J, Hodgson C, Aubron C, Rycus PT et al (2014) Predicting survival after extracorporeal membrane oxygenation for severe acute respiratory failure. The respiratory extracorporeal membrane oxygenation survival prediction (RESP) score. Am J Respir Crit Care Med 189(11):1374–1382CrossRefGoogle Scholar
  32. 32.
    Schmidt M, Burrell A, Roberts L, Bailey M, Sheldrake J, Rycus PT et al (2015) Predicting survival after ECMO for refractory cardiogenic shock: the survival after veno-arterial-ECMO (SAVE)-score. Eur Heart J 36(33):2246–2256PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fares Alghanem
    • 1
    • 2
  • Sowmya Balasubramanian
    • 2
  • Jeffrey D. Zampi
    • 2
    Email author
  1. 1.College of MedicineCentral Michigan UniversityMount PleasantUSA
  2. 2.Department of Pediatrics, C.S. Mott Children’s HospitalUniversity of MichiganAnn ArborUSA

Personalised recommendations