Advertisement

Birth Location of Infants with Critical Congenital Heart Disease in California

  • Neha J. Purkey
  • David M. Axelrod
  • Doff B. McElhinney
  • Joseph Rigdon
  • FeiFei Qin
  • Manisha Desai
  • Andrew Y. Shin
  • Valerie Y. Chock
  • Henry C. Lee
Original Article
  • 12 Downloads

Abstract

The American Academy of Pediatrics classifies neonatal intensive care units (NICUs) from level I to IV based on the acuity of care each unit can provide. Birth in a higher level center is associated with lower morbidity and mortality in high-risk populations. Congenital heart disease accounts for 25–50% of infant mortality related to birth defects in the U.S., but recent data are lacking on where infants with critical congenital heart disease (CCHD) are born. We used a linked dataset from the Office of Statewide Health Planning and Development to access ICD-9 diagnosis codes for all infants born in California from 2008 to 2012. We compared infants with CCHD to the general population, identified where infants with CCHD were born based on NICU level of care, and predicted level IV birth among infants with CCHD using logistic regression techniques. From 2008 to 2012, 6325 infants with CCHD were born in California, with 23.7% of infants with CCHD born at a level IV NICU compared to 8.4% of the general population. Level IV birth for infants with CCHD was associated with lower gestational age, higher maternal age and education, the presence of other congenital anomalies, and the diagnosis of a single ventricle lesion. More infants with CCHD are born in a level IV NICU compared to the general population. Future studies are needed to determine if birth in a lower level of care center impacts outcomes for infants with CCHD.

Keywords

Neonatal intensive care Birth location Prevalence Congenital heart disease California 

Notes

Funding

None.

Compliance with Ethical Standards

Conflict of interest

The authors have no conflicts of interest to disclose. All authors have approved the final version of the manuscript.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors. This study was approved by Stanford University’s Institutional Review Board Panel on Medical Human Subjects and the California Committee for the Protection of Human Subjects.

Supplementary material

246_2018_2019_MOESM1_ESM.docx (89 kb)
Supplementary material 1 (DOCX 88 KB)

References

  1. 1.
    Gortmaker S, Sobol A, Clark C et al (1985) The survival of very low-birth weight infants by level of hospital of birth: a population study of perinatal systems in four states. Am J Obstet Gynecol 152:517–524CrossRefGoogle Scholar
  2. 2.
    Committee on Fetus and Newborn (2012) Levels of neonatal care. Pediatrics 130:587–597.  https://doi.org/10.1542/peds.2012-1999 CrossRefGoogle Scholar
  3. 3.
    Cifuentes J, Bronstein J, Phibbs CS et al (2002) Mortality in low birth weight infants according to level of neonatal care at hospital of birth. Pediatrics 109:745–751CrossRefGoogle Scholar
  4. 4.
    Phibbs CS, Baker LC, Caughey AB et al (2007) Level and volume of neonatal intensive care and mortality in very-low-birth-weight infants. N Engl J Med 356:2165–2175.  https://doi.org/10.1056/NEJMsa065029 CrossRefPubMedGoogle Scholar
  5. 5.
    Gould JB, Marks AR, Chavez G (2002) Expansion of community-based perinatal care in California. J Perinatol 22:630–640.  https://doi.org/10.1038/sj.jp.7210824 CrossRefPubMedGoogle Scholar
  6. 6.
    Lorch SA, Baiocchi M, Ahlberg CE, Small DS (2012) The differential impact of delivery hospital on the outcomes of premature infants. Pediatrics 130:270–278.  https://doi.org/10.1542/peds.2011-2820 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Phibbs CS, Bronstein JM, Buxton E, Phibbs RH (1996) The effects of patient volume and level of care at the hospital of birth on neonatal mortality. JAMA 276:1054–1059CrossRefGoogle Scholar
  8. 8.
    Kastenberg ZJ, Lee HC, Profit J et al (2015) Effect of deregionalized care on mortality in very low-birth-weight infants with necrotizing enterocolitis. JAMA Pediatr 169:26–32.  https://doi.org/10.1001/jamapediatrics.2014.2085 CrossRefPubMedGoogle Scholar
  9. 9.
    Lapcharoensap W, Gage SC, Kan P et al (2015) Hospital variation and risk factors for bronchopulmonary dysplasia in a population-based cohort. JAMA Pediatr 169:e143676.  https://doi.org/10.1001/jamapediatrics.2014.3676 CrossRefPubMedGoogle Scholar
  10. 10.
    Oster ME, Lee KA, Honein MA et al (2013) Temporal trends in survival among infants with critical congenital heart defects. Pediatrics 131:e1502–e1508.  https://doi.org/10.1542/peds.2012-3435 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Reller MD, Strickland MJ, Riehle-Colarusso T et al (2008) Prevalence of congenital heart defects in metropolitan Atlanta, 1998–2005. J Pediatr 153:807–813.  https://doi.org/10.1016/j.jpeds.2008.05.059 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hoffman JIE, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39:1890–1900CrossRefGoogle Scholar
  13. 13.
    Petrini J, Damus K, Russell R et al (2002) Contribution of birth defects to infant mortality in the United States. Teratology 66(Suppl 1):S3–S6.  https://doi.org/10.1002/tera.90002 CrossRefPubMedGoogle Scholar
  14. 14.
    Centers for Disease Control and Prevention (CDC) (2010) Racial differences by gestational age in neonatal deaths attributable to congenital heart defects—United States, 2003–2006. MMWR Morb Mortal Wkly Rep 59:1208–1211Google Scholar
  15. 15.
    Yang Q, Chen H, Correa A et al (2006) Racial differences in infant mortality attributable to birth defects in the United States, 1989–2002. Birt Defects Res A 76:706–713.  https://doi.org/10.1002/bdra.20308 CrossRefGoogle Scholar
  16. 16.
    Yang Q, Khoury MJ, Mannino D (1997) Trends and patterns of mortality associated with birth defects and genetic diseases in the United States, 1979–1992: an analysis of multiple-cause mortality data. Genet Epidemiol 14:493–505.  https://doi.org/10.1002/(SICI)1098-2272(1997)14:5%3C493::AID-GEPI4%3E3.0.CO;2-2 CrossRefPubMedGoogle Scholar
  17. 17.
    Dawson AL, Cassell CH, Riehle-Colarusso T et al (2013) Factors associated with late detection of critical congenital heart disease in newborns. Pediatrics 132:e604–e611.  https://doi.org/10.1542/peds.2013-1002 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Simpson LL, Harvey-Wilkes K, D’Alton ME (2000) Congenital heart disease: the impact of delivery in a tertiary care center on SNAP scores (scores for neonatal acute physiology). Am J Obstet Gynecol 182:184–191CrossRefGoogle Scholar
  19. 19.
    Types of Data—Data Request Center—OSHPD HID. https://www.oshpd.ca.gov/HID/Data_Request_Center/Types_of_Data.html. Accessed 14 Dec 2017
  20. 20.
    Mahle WT, Newburger JW, Matherne GP et al (2009) Role of pulse oximetry in examining newborns for congenital heart disease: a scientific statement from the American Heart Association and American Academy of Pediatrics. Circulation 120:447–458.  https://doi.org/10.1161/CIRCULATIONAHA.109.192576 CrossRefPubMedGoogle Scholar
  21. 21.
    Kemper AR, Mahle WT, Martin GR et al (2011) Strategies for implementing screening for critical congenital heart disease. Pediatrics 128:e1259–e1267.  https://doi.org/10.1542/peds.2011-1317 CrossRefPubMedGoogle Scholar
  22. 22.
    Peterson C, Dawson A, Grosse SD et al (2013) Hospitalizations, costs, and mortality among infants with critical congenital heart disease: how important is timely detection?: How important is timely critical congenital heart disease detection? Birt Defects Res A 97:664–672.  https://doi.org/10.1002/bdra.23165 CrossRefGoogle Scholar
  23. 23.
    Meddings J, Reichert H, Smith SN et al (2017) The impact of disability and social determinants of health on condition-specific readmissions beyond medicare risk adjustments: a cohort study. J Gen Intern Med 32:71–80.  https://doi.org/10.1007/s11606-016-3869-x CrossRefPubMedGoogle Scholar
  24. 24.
    SAS Institute (2017) Version 9.3, Cary, NCGoogle Scholar
  25. 25.
    R core team (2017) R: A Language and environment for statistical computing. In: R Found. Stat. Comput. Vienna Austria. https://www.R-project.org/. Accessed 25 Jan 2018
  26. 26.
    Pradat P, Francannet C, Harris JA, Robert E (2003) The epidemiology of cardiovascular defects, Part I: a study based on data from three large registries of congenital malformations. Pediatr Cardiol 24:195–221.  https://doi.org/10.1007/s00246-002-9401-6 CrossRefPubMedGoogle Scholar
  27. 27.
    Egbe A, Uppu S, Lee S et al (2014) Changing Prevalence of severe congenital heart disease: a population-based study. Pediatr Cardiol 35:1232–1238.  https://doi.org/10.1007/s00246-014-0921-7 CrossRefPubMedGoogle Scholar
  28. 28.
    Fixler DE, Nembhard WN, Xu P et al (2012) Effect of acculturation and distance from cardiac center on congenital heart disease mortality. Pediatrics 129:1118–1124.  https://doi.org/10.1542/peds.2011-3114 CrossRefPubMedGoogle Scholar
  29. 29.
    Egbe A, Uppu S, Stroustrup A et al (2014) Incidences and sociodemographics of specific congenital heart diseases in the United States of America: an evaluation of hospital discharge diagnoses. Pediatr Cardiol 35:975–982.  https://doi.org/10.1007/s00246-014-0884-8 CrossRefPubMedGoogle Scholar
  30. 30.
    Jones RK, Jerman J (2014) Abortion incidence and service availability in the United States, 2011. Perspect Sex Reprod Health 46:3–14CrossRefGoogle Scholar
  31. 31.
    Costello JM, Polito A, Brown DW et al (2010) Birth before 39 weeks’ gestation is associated with worse outcomes in neonates with heart disease. Pediatrics 126:277–284.  https://doi.org/10.1542/peds.2009-3640 CrossRefPubMedGoogle Scholar
  32. 32.
    Costello JM, Pasquali SK, Jacobs JP et al (2014) Gestational age at birth and outcomes after neonatal cardiac surgery: an analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. Circulation 129:2511–2517.  https://doi.org/10.1161/CIRCULATIONAHA.113.005864 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cnota JF, Gupta R, Michelfelder EC, Ittenbach RF (2011) Congenital heart disease infant death rates decrease as gestational age advances from 34 to 40 weeks. J Pediatr 159:761–765.  https://doi.org/10.1016/j.jpeds.2011.04.020 CrossRefPubMedGoogle Scholar
  34. 34.
    Copel JA, Pilu G, Kleinman CS (1986) Congenital heart disease and extracardiac anomalies: associations and indications for fetal echocardiography. Am J Obstet Gynecol 154:1121–1132CrossRefGoogle Scholar
  35. 35.
    Donofrio MT, Moon-Grady AJ, Hornberger LK et al (2014) Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation 129:2183–2242.  https://doi.org/10.1161/01.cir.0000437597.44550.5d CrossRefPubMedGoogle Scholar
  36. 36.
    Fixler DE, Xu P, Nembhard WN et al (2014) Age at referral and mortality from critical congenital heart disease. Pediatrics 134:e98–e105.  https://doi.org/10.1542/peds.2013-2895 CrossRefPubMedGoogle Scholar
  37. 37.
    Morris SA, Ethen MK, Penny DJ et al (2014) Prenatal diagnosis, birth location, surgical center, and neonatal mortality in infants with hypoplastic left heart syndrome. Circulation 129:285–292.  https://doi.org/10.1161/CIRCULATIONAHA.113.003711 CrossRefPubMedGoogle Scholar
  38. 38.
    Data Access—Vital Statistics Online. https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Accessed 14 Dec 2017
  39. 39.
    Holmes LB, Westgate M-N (2012) Using ICD-9 codes to establish prevalence of malformations in newborn infants. Birt Defects Res A 94:208–214.  https://doi.org/10.1002/bdra.23001 CrossRefGoogle Scholar
  40. 40.
    Frohnert BK, Lussky RC, Alms MA et al (2005) Validity of hospital discharge data for identifying infants with cardiac defects. J Perinatol 25:737–742.  https://doi.org/10.1038/sj.jp.7211382 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Pediatric Cardiology, Department of PediatricsLucile Packard Children’s Hospital at StanfordPalo AltoUSA
  2. 2.Quantitative Sciences Unit, Department of MedicineStanford University School of MedicinePalo AltoUSA
  3. 3.Division of Neonatal and Developmental Medicine, Department of PediatricsLucile Packard Children’s Hospital at StanfordPalo AltoUSA

Personalised recommendations