Advertisement

Relationships of Body Composition to Cardiac Structure and Function in Adolescents With Down Syndrome are Different than in Adolescents Without Down Syndrome

  • Andrea Kelly
  • Samuel S. Gidding
  • Rachel Walega
  • Claire Cochrane
  • Sarah Clauss
  • Ray R. Townsend
  • Melissa Xanthopoulos
  • Mary E. Pipan
  • Babette S. Zemel
  • Sheela N. Magge
  • Meryl S. Cohen
Original Article
  • 94 Downloads

Abstract

Median survival in Down syndrome (DS) is 60 years, but cardiovascular disease risk and its markers such as left ventricular mass (LVM) have received limited attention. In youth, LVM is typically scaled to height2.7 as a surrogate for lean body mass (LBM), the strongest predictor of LVM, but whether this algorithm applies to DS, a condition which features short stature, is unknown. To examine the relationships of LVM and function with height, LBM, and moderate-to-vigorous physical activity(MVPA) in DS, DS youth aged 10–20 years, and age-, sex-, BMI-, race-matched nonDS controls underwent echocardiography for LVM, ejection fraction (EF), and left ventricular diastolic function (measured as E/E′); dual-energy X-ray absorptiometry (DXA)-measured LBM; accelerometry for MVPA. (DS vs. nonDS median [min–max]): DS had lower height (cm) (144.5 [116.7–170.3] vs. 163.3 [134.8–186.7]; p < 0.0001); LBM (kg) (33.48 [14.5–62.3] vs 41.8 [18.07–72.46], p < 0.0001); and LVM (g) (68.3 [32.1–135] vs 94.0 [43.9–164.6], p < 0.0001); similar EF (%) (65 [54–77] vs 64 [53–77], p = 0.59); and higher E/E′ (8.41 [5.54–21.4] vs 5.81 [3.44–9.56], p < 0.0001). In height2.7-adjusted models, LVM was lower in DS (β = − 7.7, p = 0.02). With adjustment for LBM, LVM was even lower in DS (β = − 15.1, p < 0.0001), a finding not explained by MVPA. E/E′ remained higher in DS after adjustment for age, height, HR, SBP, and BMI (β = 2.6, p < 0.0001). DS was associated with stiffer left ventricles and lower LVM, the latter magnified with LBM adjustment. Scaling to height2.7, the traditional approach for assessing LVM in youth, may underestimate LVM differences in DS. Whether lower LVM and diastolic function are intrinsic to DS, pathologic, or protective remains unknown.

Clinical Trial Registration: NCT01821300.

Keywords

Down syndrome Left ventricular mass Left ventricular diastolic function Body composition Echocardiogram 

Notes

Acknowledgements

We thank the study participants and their families, as well as research coordinators Amber Lauff and Priscilla Andalia and students Sarah Appeadu, Elizabeth Stulpin, Claire Trindle, Natalie Rosetti, Jeffrey Signora, Cassandra Zhi, Cedar Slovacek, Suzanne M. Arnott, Monica N. Salama, and Emily Eicheldinger for their diligent efforts. In addition, we thank the CHOP Clinical and Translational Research Center, the CNHS Clinical Research Unit, the CHOP Pediatric Research Consortium, and the CHOP Recruitment Enhancement Core, without whom this study would not have been possible, for their contributions.

Funding

This study was supported by NIH R01HD071981 (Kelly/Magge), NIH National Center for Research Resources and the National Center for Advancing Translational Sciences through Grant UL1TR000003, Bethesda, MD, USA and Research Electronic Data Capture (REDCap). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Compliance with Ethical Standards

Conflict of interest

The authors have no financial relationships relevant to this article to disclose. The authors have no conflicts of interest to disclose.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Supplementary material

246_2018_2014_MOESM1_ESM.pptx (58 kb)
Supplemental Figure 1. Relationship of Left Ventricular Mass Adjusted for Age, HR, SBP, LBM, Black-, MVR-, &#x0026; CHD-status with Moderate-to-Vigorous Physical Activity. Shown are adjusted-LVM in DS [(x no CHD), (+ h/o CHD not requiring surgical repair), (Δ h/o CHD repaired surgically)] and matched controls (●) vs MVPA (min). Fitted lines for LVM vs MVPA for DS (●●●) and Controls (- - -) are also shown. LVM remained lower in DS (-13.9 g [95% CI: -20.6 to -7.3], p&#x003C;0.0001) even after adjustment for MVPA. A DS*MVPA interaction was present (p = 0.029; likelihood ratio test=0.021), such that in DS increasing MVPA was associated with lower LVM. (PPTX 58 KB)

References

  1. 1.
    Covelli V, Raggi A, Meucci P, Paganelli C, Leonardi M (2016) Ageing of people with Down’s syndrome: a systematic literature review from 2000 to 2014. Int J Rehabil Res 39(1):20–28CrossRefGoogle Scholar
  2. 2.
    Lui GK, Saidi A, Bhatt AB, Burchill LJ, Deen JF, Earing MG, Gewitz M, Ginns J, Kay JD, Kim YY, Kovacs AH, Krieger EV, Wu FM, Yoo SJ, American Heart Association Adult Congenital Heart Disease Committee of the Council on Clinical C, Council on Cardiovascular Disease in the Y, Council on Cardiovascular R, Intervention, Council on Quality of C, Outcomes R (2017) Diagnosis and management of noncardiac complications in adults with congenital heart disease: a Scientific statement From the American Heart Association. Circulation 136(20):e348–e392CrossRefGoogle Scholar
  3. 3.
    Deen JF, Krieger EV, Slee AE, Arslan A, Arterburn D, Stout KK, Portman MA (2016) Metabolic syndrome in adults with congenital heart disease. J Am Heart Assoc 5(2):e001132CrossRefGoogle Scholar
  4. 4.
    Foerste T, Sabin M, Reid S, Reddihough D (2016) Understanding the causes of obesity in children with trisomy 21: hyperphagia vs physical inactivity. J Intellect Disabil Res 60(9):856–864CrossRefGoogle Scholar
  5. 5.
    Nordstrom M, Hansen BH, Paus B, Kolset SO (2013) Accelerometer-determined physical activity and walking capacity in persons with Down syndrome, Williams syndrome and Prader-Willi syndrome. Res Dev Disabil 34(12):4395–4403CrossRefGoogle Scholar
  6. 6.
    Pitetti K, Baynard T, Agiovlasitis S (2013) Children and adolescents with Down syndrome, physical fitness and physical activity. J Sport Health Sci 2(1):47–57CrossRefGoogle Scholar
  7. 7.
    Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322(22):1561–1566CrossRefGoogle Scholar
  8. 8.
    Urbina EM, Gidding SS, Bao W, Pickoff AS, Berdusis K, Berenson GS (1995) Effect of body size, ponderosity, and blood pressure on left ventricular growth in children and young adults in the Bogalusa Heart Study. Circulation 91(9):2400–2406CrossRefGoogle Scholar
  9. 9.
    Papavassiliou DP, Treiber FA, Strong WB, Malpass MD, Davis H (1996) Anthropometric, demographic, and cardiovascular predictors of left ventricular mass in young children. Am J Cardiol 78(3):323–326CrossRefGoogle Scholar
  10. 10.
    Murdison KA, Treiber FA, Mensah G, Davis H, Thompson W, Strong WB (1998) Prediction of left ventricular mass in youth with family histories of essential hypertension. Am J Med Sci 315(2):118–123PubMedGoogle Scholar
  11. 11.
    Foster BJ, Mackie AS, Mitsnefes M, Ali H, Mamber S, Colan SD (2008) A novel method of expressing left ventricular mass relative to body size in children. Circulation 117(21):2769–2775CrossRefGoogle Scholar
  12. 12.
    Gidding SS (2016) Assessment of left ventricular mass in children and adolescents: current status. J Pediatr 170:12–14CrossRefGoogle Scholar
  13. 13.
    Daniels SR, Kimball TR, Morrison JA, Khoury P, Witt S, Meyer RA (1995) Effect of lean body mass, fat mass, blood pressure, and sexual maturation on left ventricular mass in children and adolescents. Statistical, biological, and clinical significance. Circulation 92(11):3249–3254CrossRefGoogle Scholar
  14. 14.
    Foster BJ, Khoury PR, Kimball TR, Mackie AS, Mitsnefes M (2016) New reference centiles for left ventricular mass relative to lean body mass in children. J Am Soc Echocardiogr 29(5):441–447e2CrossRefGoogle Scholar
  15. 15.
    Khoury PR, Mitsnefes M, Daniels SR, Kimball TR (2009) Age-specific reference intervals for indexed left ventricular mass in children. J Am Soc Echocardiogr 22(6):709–714CrossRefGoogle Scholar
  16. 16.
    de Simone G, Daniels SR, Devereux RB, Meyer RA, Roman MJ, de Divitiis O, Alderman MH (1992) Left ventricular mass and body size in normotensive children and adults: assessment of allometric relations and impact of overweight. J Am Coll Cardiol 20(5):1251–1260CrossRefGoogle Scholar
  17. 17.
    Szewczykowska M, Grygalewicz J, Szkilladz-Skiba M (2009) Left ventricular mass in children in relation to body surface area. Med Wieku Rozwoj 13(3):187–193PubMedGoogle Scholar
  18. 18.
    Bonatto RC, Fioretto JR, Okoshi K, Matsubara BB, Padovani CR, Manfrin TC, Gobbi Mde F, Martino RS, Bregagnollo EA (2006) Percentile curves of normal values of echocardiographic measurements in normal children from the central-southern region of the State of Sao Paulo, Brazil. Arq Bras Cardiol 87(6):711–721CrossRefGoogle Scholar
  19. 19.
    Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei Z, Wei R, Curtin LR, Roche AF, Johnson CL (2002) 2000 CDC Growth Charts for the United States: methods and development. Vital Health Stat 11(246):1–190Google Scholar
  20. 20.
    National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents (2005) The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 114:555–576CrossRefGoogle Scholar
  21. 21.
    Armstrong AC, Ricketts EP, Cox C, Adler P, Arynchyn A, Liu K, Stengel E, Sidney S, Lewis CE, Schreiner PJ, Shikany JM, Keck K, Merlo J, Gidding SS, Lima JA (2015) Quality control and reproducibility in M-mode, two-dimensional, and speckle tracking echocardiography acquisition and analysis: the CARDIA study, year 25 examination experience. Echocardiography 32(8):1233–1240CrossRefGoogle Scholar
  22. 22.
    Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16(3):233–270CrossRefGoogle Scholar
  23. 23.
    Lopez L, Colan SD, Frommelt PC, Ensing GJ, Kendall K, Younoszai AK, Lai WW, Geva T (2010) Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr;23(5):465–495 (quiz 576-7)CrossRefGoogle Scholar
  24. 24.
    Eberhard Y, Eterradossi J, Rapacchi B (1989) Physical aptitudes to exertion in children with Down’s syndrome. J Ment Defic Res 33(Pt 2):167–174PubMedGoogle Scholar
  25. 25.
    Fernhall B, McCubbin JA, Pitetti KH, Rintala P, Rimmer JH, Millar AL, De Silva A (2001) Prediction of maximal heart rate in individuals with mental retardation. Med Sci Sports Exerc 33(10):1655–1660CrossRefGoogle Scholar
  26. 26.
    Fernhall B, Millar AL, Tymeson GT, Burkett LN (1990) Maximal exercise testing of mentally retarded adolescents and adults: reliability study. Arch Phys Med Rehabil 71(13):1065–1068PubMedGoogle Scholar
  27. 27.
    Baynard T, Pitetti KH, Guerra M, Unnithan VB, Fernhall B (2008) Age-related changes in aerobic capacity in individuals with mental retardation: a 20-yr review. Med Sci Sports Exerc 40(11):1984–1989CrossRefGoogle Scholar
  28. 28.
    Baggish AL, Wang F, Weiner RB, Elinoff JM, Tournoux F, Boland A, Picard MH, Hutter AM Jr, Wood MJ (2008) Training-specific changes in cardiac structure and function: a prospective and longitudinal assessment of competitive athletes. J Appl Physiol 104(4):1121–1128CrossRefGoogle Scholar
  29. 29.
    Baggish AL, Yared K, Wang F, Weiner RB, Hutter AM Jr, Picard MH, Wood MJ (2008) The impact of endurance exercise training on left ventricular systolic mechanics. Am J Physiol Heart Circ Physiol 295(3):H1109–H1116CrossRefGoogle Scholar
  30. 30.
    Utomi V, Oxborough D, Whyte GP, Somauroo J, Sharma S, Shave R, Atkinson G, George K (2013) Systematic review and meta-analysis of training mode, imaging modality and body size influences on the morphology and function of the male athlete’s heart. Heart 99(23):1727–1733CrossRefGoogle Scholar
  31. 31.
    Bacha F, Gidding SS, Pyle L, Levitt Katz L, Kriska A, Nadeau KJ, Lima JAC, Treatment Options for Type 2 Diabetes in A, Youth Study G (2016) Relationship of cardiac structure and function to cardiorespiratory fitness and lean body mass in adolescents and young adults with type 2 diabetes. J Pediatr 177:159–166e1CrossRefGoogle Scholar
  32. 32.
    Armstrong AC, Gidding S, Gjesdal O, Wu C, Bluemke DA, Lima JA (2012) LV mass assessed by echocardiography and CMR, cardiovascular outcomes, and medical practice. JACC Cardiovasc Imaging 5(8):837–848CrossRefGoogle Scholar
  33. 33.
    Murdoch JC, Rodger JC, Rao SS, Fletcher CD, Dunnigan MG (1977) Down’s syndrome: an atheroma-free model? Br Med J 2(6081):226–228CrossRefGoogle Scholar
  34. 34.
    Draheim CC, Geijer JR, Dengel DR (2010) Comparison of intima-media thickness of the carotid artery and cardiovascular disease risk factors in adults with versus without the Down syndrome. Am J Cardiol 106(10):1512–1516CrossRefGoogle Scholar
  35. 35.
    Hill DA, Gridley G, Cnattingius S, Mellemkjaer L, Linet M, Adami HO, Olsen JH, Nyren O, Fraumeni JF Jr (2003) Mortality and cancer incidence among individuals with Down Syndrome. Arch Intern Med 163(6):705–711CrossRefGoogle Scholar
  36. 36.
    Gates P, Tanaka H, Graves J, Seals D (2003) Left ventricular structure and diastolic function with human ageing. Relation to habitual exercise and arterial stiffness. Eur Heart J 24:2213–2220CrossRefGoogle Scholar
  37. 37.
    Arbab-Zadeh A, Dijk E, Prasad A, Fu Q, Torres P, Zhang R, Thomas J, Palmer D, Levine B (2004) Effect of aging and physical activity on left ventricular compliance. Circulation 110:1799–1805CrossRefGoogle Scholar
  38. 38.
    Jain A, Avendano G, Dharamsey S, Dasmahapatra A, Agarwal R, Reddi A, Regan T (1996) Left ventricular diastolic function in hypertension and role of plasma glucose and insulin. Comparison with diabetic heart. Circulation 93(7):1396–1402CrossRefGoogle Scholar
  39. 39.
    Russo C, Jin Z, Homma S, Rundek T, Elkind M, Sacco R, DiTullio M (2011) Effect of obesity and overweight on left ventricular diastolic function: a community-based study in an elderly cohort. J Am Coll Cardiol 57(12):1368–1374CrossRefGoogle Scholar
  40. 40.
    Störk T, Eichstädt H, Möckel M, Bortfeldt R, Müller R, Hochrein H (1992) Changes of diastolic function induced by cigarette smoking: an echocardiographic study in patients with coronary artery disease. Clin Cardiol 15:80–86CrossRefGoogle Scholar
  41. 41.
    Ramachandran D, Mulle JG, Locke AE, Bean LJ, Rosser TC, Bose P, Dooley KJ, Cua CL, Capone GT, Reeves RH, Maslen CL, Cutler DJ, Sherman SL, Zwick ME (2015) Contribution of copy-number variation to Down syndrome-associated atrioventricular septal defects. Genet Med 17(7):554–560CrossRefGoogle Scholar
  42. 42.
    Ramachandran D, Zeng Z, Locke AE, Mulle JG, Bean LJ, Rosser TC, Dooley KJ, Cua CL, Capone GT, Reeves RH, Maslen CL, Cutler DJ, Feingold E, Sherman SL, Zwick ME (2015) Genome-wide association study of down syndrome-associated atrioventricular septal defects. G3 5(10):1961–1971CrossRefGoogle Scholar
  43. 43.
    Ackerman C, Locke AE, Feingold E, Reshey B, Espana K, Thusberg J, Mooney S, Bean LJ, Dooley KJ, Cua CL, Reeves RH, Sherman SL, Maslen CL (2012) An excess of deleterious variants in VEGF-A pathway genes in Down-syndrome-associated atrioventricular septal defects. Am J Hum Genet 91(4):646–659CrossRefGoogle Scholar
  44. 44.
    Lovic D, Narayan P, Pittaras A, Faselis C, Doumas M, Kokkinos P (2017) Left ventricular hypertrophy in athletes and hypertensive patients. J Clin Hypertens 19(4):413–417CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Andrea Kelly
    • 1
    • 2
    • 11
  • Samuel S. Gidding
    • 3
  • Rachel Walega
    • 4
  • Claire Cochrane
    • 1
  • Sarah Clauss
    • 5
  • Ray R. Townsend
    • 6
  • Melissa Xanthopoulos
    • 7
  • Mary E. Pipan
    • 2
    • 8
  • Babette S. Zemel
    • 2
    • 9
  • Sheela N. Magge
    • 4
  • Meryl S. Cohen
    • 2
    • 10
  1. 1.Division of Endocrinology & DiabetesThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  2. 2.Department of PediatricsPerelman School of Medicine of University of PennsylvaniaPhiladelphiaUSA
  3. 3.Familial Hypercholesterolemia FoundationPasadenaUSA
  4. 4.Division of Endocrinology and Diabetes, Center for Translational ScienceChildren’s National Health SystemWashingtonUSA
  5. 5.Division of CardiologyChildren’s National Health SystemWashingtonUSA
  6. 6.Department of MedicinePerelman School of Medicine of University of PennsylvaniaPhiladelphiaUSA
  7. 7.Department of Child and Adolescent Psychiatry and Behavioral SciencesThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  8. 8.Division of Behavioral PediatricsChildren’s Hospital of PhiladelphiaPhiladelphiaUSA
  9. 9.Division of Gastroenterology, Hepatology, & NutritionThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  10. 10.Division of CardiologyThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  11. 11.Division of Endocrinology & DiabetesRoberts Center for Pediatric ResearchPhiladelphiaUSA

Personalised recommendations