Advertisement

Pediatric Cardiology

, Volume 39, Issue 3, pp 538–547 | Cite as

Comparison of 3D Echocardiogram-Derived 3D Printed Valve Models to Molded Models for Simulated Repair of Pediatric Atrioventricular Valves

  • Adam B. Scanlan
  • Alex V. Nguyen
  • Anna Ilina
  • Andras Lasso
  • Linnea Cripe
  • Anusha Jegatheeswaran
  • Elizabeth Silvestro
  • Francis X. McGowan
  • Christopher E. Mascio
  • Stephanie Fuller
  • Thomas L. Spray
  • Meryl S. Cohen
  • Gabor Fichtinger
  • Matthew A. Jolley
Original Article

Abstract

Mastering the technical skills required to perform pediatric cardiac valve surgery is challenging in part due to limited opportunity for practice. Transformation of 3D echocardiographic (echo) images of congenitally abnormal heart valves to realistic physical models could allow patient-specific simulation of surgical valve repair. We compared materials, processes, and costs for 3D printing and molding of patient-specific models for visualization and surgical simulation of congenitally abnormal heart valves. Pediatric atrioventricular valves (mitral, tricuspid, and common atrioventricular valve) were modeled from transthoracic 3D echo images using semi-automated methods implemented as custom modules in 3D Slicer. Valve models were then both 3D printed in soft materials and molded in silicone using 3D printed “negative” molds. Using pre-defined assessment criteria, valve models were evaluated by congenital cardiac surgeons to determine suitability for simulation. Surgeon assessment indicated that the molded valves had superior material properties for the purposes of simulation compared to directly printed valves (p < 0.01). Patient-specific, 3D echo-derived molded valves are a step toward realistic simulation of complex valve repairs but require more time and labor to create than directly printed models. Patient-specific simulation of valve repair in children using such models may be useful for surgical training and simulation of complex congenital cases.

Keywords

3D printing Surgical simulation Valve repair 3D echocardiography 

Abbreviations

3D

Three-dimensional

2D

Two-dimensional

3DE

Three-dimensional echocardiogram

Echo

Echocardiogram

DICOM

Digital imaging in medicine

CAVC

Complete atrioventricular canal

HLHS

Hypoplastic left heart syndrome

Notes

Acknowledgements

We would like to thank the 3D core sonographers group at The Children’s Hospital of Philadelphia (CHOP) for their outstanding images as well as the 3D printing facility at CHOP and the congenital cardiac surgical fellows who tested the valves.

Funding

This work was supported by the Department of Anesthesia and Critical Care at The Children’s Hospital of Philadelphia, the National Institute of Biomedical Imaging and Bioengineering (NIBIB) (P41 EB015902), Cancer Care Ontario with funds provided by the Ontario Ministry of Health and Long-Term Care and the Natural Sciences and Engineering Research Council of Canada.

Compliance with Ethical Standards

Conflict of interest

The authors declare they have no conflict of interest.

Ethical Approval

All procedures performed on humans were in accordance with the ethical standards of the Children’s Hospital of Philadelphia and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

References

  1. 1.
    Carpentier A, Chauvaud S, Mace L, Relland J, Mihaileanu S, Marino JP, Abry B, Guibourt P (1988) A new reconstructive operation for Ebstein’s anomaly of the tricuspid valve. J Thorac Cardiovasc Surg 96(1):92–101PubMedGoogle Scholar
  2. 2.
    Chauvaud S, Perier P, Touati G, Relland J, Kara SM, Benomar M, Carpentier A (1986) Long-term results of valve repair in children with acquired mitral valve incompetence. Circulation 74(3 Pt 2):I104–I109PubMedGoogle Scholar
  3. 3.
    Galloway AC, Colvin SB, Baumann FG, Esposito R, Vohra R, Harty S, Freeberg R, Kronzon I, Spencer FC (1988) Long-term results of mitral valve reconstruction with Carpentier techniques in 148 patients with mitral insufficiency. Circulation 78(3 Pt 2):I97–I105PubMedGoogle Scholar
  4. 4.
    Mahmood F, Matyal R (2015) A quantitative approach to the intraoperative echocardiographic assessment of the mitral valve for repair. Anesth Analg 121(1):34–58.  https://doi.org/10.1213/ANE.0000000000000726 CrossRefPubMedGoogle Scholar
  5. 5.
    Poelaert JI, Bouchez S (2016) Perioperative echocardiographic assessment of mitral valve regurgitation: a comprehensive review. Eur J Cardiothorac Surg 50(5):801–812.  https://doi.org/10.1093/ejcts/ezw196 CrossRefPubMedGoogle Scholar
  6. 6.
    Carpentier A, Branchini B, Cour JC, Asfaou E, Villani M, Deloche A, Relland J, D’Allaines C, Blondeau P, Piwnica A, Parenzan L, Brom G (1976) Congenital malformations of the mitral valve in children: pathology and surgical treatment. J Thorac Cardiovasc Surg 72(6):854–866PubMedGoogle Scholar
  7. 7.
    Baird CW, Myers PO, Marx G, Del Nido PJ (2012) Mitral valve operations at a high-volume pediatric heart center: Evolving techniques and improved survival with mitral valve repair versus replacement. Ann Pediatr Cardiol 5(1):13–20.  https://doi.org/10.4103/0974-2069.93704 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rogers-Vizena CR, Sporn SF, Daniels KM, Padwa BL, Weinstock P (2016) Cost-benefit analysis of three-dimensional craniofacial models for midfacial distraction: a pilot study. Cleft Palate Craniofac J.  https://doi.org/10.1597/15-281 PubMedGoogle Scholar
  9. 9.
    Weinstock P, Prabhu SP, Flynn K, Orbach DB, Smith E (2015) Optimizing cerebrovascular surgical and endovascular procedures in children via personalized 3D printing. J Neurosurg Pediatr.  https://doi.org/10.3171/2015.3.PEDS14677 PubMedGoogle Scholar
  10. 10.
    Helder MR, Rowse PG, Ruparel RK, Li Z, Farley DR, Joyce LD, Stulak JM (2016) Basic cardiac surgery skills on sale for $22.50: an aortic anastomosis simulation curriculum. Ann Thorac Surg 101(1):316–322.  https://doi.org/10.1016/j.athoracsur.2015.08.005 (discussion 322)CrossRefPubMedGoogle Scholar
  11. 11.
    Joyce DL, Dhillon TS, Caffarelli AD, Joyce DD, Tsirigotis DN, Burdon TA, Fann JI (2011) Simulation and skills training in mitral valve surgery. J Thorac Cardiovasc Surg 141(1):107–112.  https://doi.org/10.1016/j.jtcvs.2010.08.059 CrossRefPubMedGoogle Scholar
  12. 12.
    Yoo SJ, Spray T, Austin EH 3rd, Yun TJ, van Arsdell GS (2017) Hands-on surgical training of congenital heart surgery using 3-dimensional print models. J Thorac Cardiovasc Surg 153(6):1530–1540.  https://doi.org/10.1016/j.jtcvs.2016.12.054 CrossRefPubMedGoogle Scholar
  13. 13.
    Mahmood F, Owais K, Taylor C, Montealegre-Gallegos M, Manning W, Matyal R, Khabbaz KR (2014) Three-dimensional printing of mitral valve using echocardiographic data. JACC Cardiovasc Imaging 8(2):227–229.  https://doi.org/10.1016/j.jcmg.2014.06.020 CrossRefPubMedGoogle Scholar
  14. 14.
    Muraru D, Veronesi F, Maddalozzo A, Dequal D, Frajhof L, Rabischoffsky A, Iliceto S, Badano LP (2016) 3D printing of normal and pathologic tricuspid valves from transthoracic 3D echocardiography data sets. Eur Heart J Cardiovasc Imaging.  https://doi.org/10.1093/ehjci/jew215 Google Scholar
  15. 15.
    Witschey WR, Pouch AM, McGarvey JR, Ikeuchi K, Contijoch F, Levack MM, Yushkevick PA, Sehgal CM, Jackson BM, Gorman RC, Gorman JH 3rd (2014) Three-dimensional ultrasound-derived physical mitral valve modeling. Ann Thorac Surg 98 (2):691–694.  https://doi.org/10.1016/j.athoracsur.2014.04.094 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Olivieri LJ, Krieger A, Loke YH, Nath DS, Kim PC, Sable CA (2015) Three-dimensional printing of intracardiac defects from three-dimensional echocardiographic images: feasibility and relative accuracy. J Am Soc Echocardiogr 28(4):392–397.  https://doi.org/10.1016/j.echo.2014.12.016 CrossRefPubMedGoogle Scholar
  17. 17.
    Vukicevic M, Puperi DS, Jane Grande-Allen K, Little SH (2017) 3D printed modeling of the mitral valve for catheter-based structural interventions. Ann Biomed Eng 45(2):508–519.  https://doi.org/10.1007/s10439-016-1676-5 CrossRefPubMedGoogle Scholar
  18. 18.
    Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30(9):1323–1341.  https://doi.org/10.1016/j.mri.2012.05.001 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Knight DS, Grasso AE, Quail MA, Muthurangu V, Taylor AM, Toumpanakis C, Caplin ME, Coghlan JG, Davar J (2015) Accuracy and reproducibility of right ventricular quantification in patients with pressure and volume overload using single-beat three-dimensional echocardiography. J Am Soc Echocardiogr 28(3):363–374.  https://doi.org/10.1016/j.echo.2014.10.012 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Watanabe K, Hashimoto I, Ibuki K, Okabe M, Kaneda H, Ichida F (2015) Evaluation of right ventricular function using single-beat three-dimensional echocardiography in neonate. Pediatr Cardiol 36(5):918–924.  https://doi.org/10.1007/s00246-015-1095-7 CrossRefPubMedGoogle Scholar
  21. 21.
    Schattke S, Wagner M, Hattasch R, Schroeckh S, Durmus T, Schimke I, Sanad W, Spethmann S, Scharhag J, Huppertz A, Baumann G, Borges AC, Knebel F (2012) Single beat 3D echocardiography for the assessment of right ventricular dimension and function after endurance exercise: intraindividual comparison with magnetic resonance imaging. Cardiovasc Ultrasound 10:6.  https://doi.org/10.1186/1476-7120-10-6 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Jolley MA, Ghelani SJ, Adar A, Harrild DM (2017) Three-dimensional mitral valve morphology and age-related trends in children and young adults with structurally normal hearts using transthoracic echocardiography. J Am Soc Echocardiogr 30(6):561–571.  https://doi.org/10.1016/j.echo.2017.01.018 CrossRefPubMedGoogle Scholar
  23. 23.
    Pouch AM, Aly AH, Lasso A, Nguyen AV, Scanlan AB, McGowan FX, Fichtinger G, Gorman RC, Gorman JH, Yushkevich PA, Jolley MA (2017) Image segmentation and modeling of the pediatric tricuspid valve in hypoplastic left heart syndrome. Lect Notes Comput Sc 10263:95–105.  https://doi.org/10.1007/978-3-319-59448-4_10 CrossRefGoogle Scholar
  24. 24.
    Kutty S, Colen T, Thompson RB, Tham E, Li L, Vijarnsorn C, Polak A, Truong DT, Danford DA, Smallhorn JF, Khoo NS (2014) Tricuspid regurgitation in hypoplastic left heart syndrome: mechanistic insights from 3-dimensional echocardiography and relationship with outcomes. Circ Cardiovasc Imaging 7(5):765–772.  https://doi.org/10.1161/CIRCIMAGING.113.001161 CrossRefPubMedGoogle Scholar
  25. 25.
    Pouch AM, Xu C, Yushkevich PA, Jassar AS, Vergnat M, Gorman JH 3rd, Gorman RC, Sehgal CM, Jackson BM (2012) Semi-automated mitral valve morphometry and computational stress analysis using 3D ultrasound. J Biomech 45 (5):903–907.  https://doi.org/10.1016/j.jbiomech.2011.11.033 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Pouch AM, Wang H, Takabe M, Jackson BM, Gorman JH 3rd, Gorman RC, Yushkevich PA, Sehgal CM (2014) Fully automatic segmentation of the mitral leaflets in 3D transesophageal echocardiographic images using multi-atlas joint label fusion and deformable medial modeling. Med Image Anal 18(1):118–129.  https://doi.org/10.1016/j.media.2013.10.001 CrossRefPubMedGoogle Scholar
  27. 27.
    Yamauchi T, Taniguchi K, Kuki S, Masai T, Noro H, Nishino M, Fujita S (2004) Evaluation of the mitral valve leaflet morphology after mitral valve reconstruction with a concept “coaptation length index”. J Card Surg 19(6):535–538.  https://doi.org/10.1111/j.0886-0440.2004.200329.x CrossRefPubMedGoogle Scholar
  28. 28.
    Pouch AM, Aly A, Lasso A, Nguyen AV, Scanlan A, McGowan F, Fichtinger G, Gorman R, Gorman J, Yushkevich PA, Jolley M (2017) Image segmentation and modeling of the pediatric tricuspid valve in hypoplastic left heart syndrome. Lect Notes Comput Sci.  https://doi.org/10.1007/978-3-319-59448-4_10 Google Scholar
  29. 29.
    da Silva JP, Baumgratz JF, da Fonseca L, Franchi SM, Lopes LM, Tavares GM, Soares AM, Moreira LF, Barbero-Marcial M (2007) The cone reconstruction of the tricuspid valve in Ebstein’s anomaly. The operation: early and midterm results. J Thorac Cardiovasc Surg 133(1):215–223.  https://doi.org/10.1016/j.jtcvs.2006.09.018 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Adam B. Scanlan
    • 1
  • Alex V. Nguyen
    • 1
  • Anna Ilina
    • 2
  • Andras Lasso
    • 2
  • Linnea Cripe
    • 1
  • Anusha Jegatheeswaran
    • 4
  • Elizabeth Silvestro
    • 3
  • Francis X. McGowan
    • 1
  • Christopher E. Mascio
    • 5
  • Stephanie Fuller
    • 5
  • Thomas L. Spray
    • 5
  • Meryl S. Cohen
    • 4
  • Gabor Fichtinger
    • 2
  • Matthew A. Jolley
    • 1
    • 4
  1. 1.Department of Anesthesiology and Critical Care MedicineChildren’s Hospital of PhiladelphiaPhiladelphiaUSA
  2. 2.Laboratory for Percutaneous SurgeryQueen’s UniversityKingstonUSA
  3. 3.Department of RadiologyChildren’s Hospital of PhiladelphiaPhiladelphiaUSA
  4. 4.Division of Pediatric CardiologyChildren’s Hospital of PhiladelphiaPhiladelphiaUSA
  5. 5.Division of Cardiothoracic SurgeryChildren’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations