Advertisement

Pediatric Cardiology

, Volume 38, Issue 4, pp 840–852 | Cite as

High Blood Pressure States in Children, Adolescents, and Young Adults Associate Accelerated Vascular Aging, with a Higher Impact in Females’ Arterial Properties

  • S. Curcio
  • V. García-Espinosa
  • J. M. Castro
  • G. Peluso
  • M. Marotta
  • M. Arana
  • P. Chiesa
  • G. Giachetto
  • D. Bia
  • Yanina Zócalo
Original Article

Abstract

The aims of the study were to determine (1) whether the presence of High blood pressure (HBP) states in the youth associate a steeper rate of age-related change in arterial geometrical and wall properties with respect to subjects with no previous cardiovascular risk factor (CRF) exposure, (2) in which parameters and in what magnitude, and (3) the existence of a gender-related difference in the impact of this condition on arterial properties. 300 individuals (mean/range: 15/4–29 years; 133 females) were included. Two groups were assembled: (1) Reference: nonprevious exposure to traditional CRF and (2) HBP: subjects with arterial hypertension and/or elevated blood pressure (BP) levels during the study. Additionally, HBP subjects were separated in BP-related subgroups. Measured parameters were (1) central (aortic) arterial BP and aortic pulse wave analysis parameters, (2) carotid and femoral artery local (pressure-strain elastic modulus) and regional (pulse wave velocity; PWV) stiffness, and (3) arterial diameters and carotid intima-media thickness (CIMT). Age-related changes in these parameters (absolute values and z-scores) were explored by obtaining simple linear regression models for each group. HBP presented a steeper rate of change (accelerated vascular aging; VA) for most of the parameters assessed, mainly in central (aortic) hemodynamics. VA increased as the HBP level got higher. Both males’ and females’ aging rates were affected by this condition, but females presented a more marked relative age-related increase with HBP exposure. HBP states in the youth gradually associate accelerated VA, with a progressive hemodynamic-structural-functional onset of damage, with females presenting a more marked relative HBP-associated arterial repercussion.

Keywords

Vascular aging Arterial stiffness Childhood Hypertension Growth-related changes Gender differences 

Notes

Acknowledgements

This work was supported by the National Agency for Research and Innovation (ANII), Espacio Interdisciplinario (EI), and Comision Sectorial de Investigacion Cientıfica (CSIC-Udelar) of the University of the Republic, Uruguay. Additionally, this work was supported by extra budgetary funds generated by CUiiDARTE Centre and Project. Professor Dr. Yanina Zócalo and Professor Dr. Daniel Bia are the Directors of CUiiDARTE Centre and Project.

Compliance with ethical standards

Conflict of interest

None.

References

  1. 1.
    Theodore RF, Broadbent J, Nagin D, Ambler A, Hogan S, Ramrakha S, Cutfield W, Williams MJ, Harrington H, Moffitt TE, Caspi A, Milne B, Poulton R (2015) Childhood to early-midlife systolic blood pressure trajectories: early-life predictors, effect modifiers, and adult cardiovascular outcomes. Hypertension 66(6):1108–1115PubMedPubMedCentralGoogle Scholar
  2. 2.
    Castro JM, García-Espinosa V, Curcio S, Arana M, Chiesa P, Giachetto G, Zócalo Y, Bia D (2016) Childhood obesity associates haemodynamic and vascular changes that result in increased central aortic pressure with augmented incident and reflected wave components, without changes in peripheral amplification. Int J Vasc Med 3129304Google Scholar
  3. 3.
    Cote AT, Harris KC, Panagiotopoulos C, Sandor GG, Devlin AM (2013) Childhood obesity and cardiovascular dysfunction. J Am Coll Cardiol 62(15):1309–1319CrossRefPubMedGoogle Scholar
  4. 4.
    Armstrong KR, Cote AT, Devlin AM, Harris KC (2014) Childhood obesity, arterial stiffness, and prevalence and treatment of hypertension. Curr Treat Options Cardiovasc Med 16(11):339CrossRefPubMedGoogle Scholar
  5. 5.
    Ridha M, Nourse SE, Selamet Tierney ES (2015) Pediatric interventions using noninvasive vascular health indices. Hypertension 65(5):949–955CrossRefPubMedGoogle Scholar
  6. 6.
    Meyer A, Kundt G, Lenschow U, Schuff-Werner P, Kienast W (2006) Improvement of early vascular changes and cardiovascular risk factors in obese children after a six-month exercise program. J Am Coll Cardiol 48(9):1865–1870CrossRefPubMedGoogle Scholar
  7. 7.
    Curcio S, García-Espinosa V, Arana M, Farro I, Chiesa P, Giachetto G, Zócalo Y, Bia D (2016) Growing-related changes in arterial properties of healthy children, adolescents, and young adults nonexposed to cardiovascular risk factors: analysis of gender-related differences. Int J Hypertens 2016:4982676CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Nilsson PM, Boutouyrie P, Cunha P, Kotsis V, Narkiewicz K, Parati G, Rietzschel E, Scuteri A, Laurent S (2013) Early vascular ageing in translation: from laboratory investigations to clinical applications in cardiovascular prevention. J Hypertens 31(8):1517–1526CrossRefPubMedGoogle Scholar
  9. 9.
    Nilsson PM, Lurbe E, Laurent S (2008) The early life origins of vascular ageing and cardiovascular risk: the EVA syndrome. J Hypertens 26(6):1049–1057CrossRefPubMedGoogle Scholar
  10. 10.
    Santana DB, Zócalo YA, Ventura IF, Arrosa JF, Florio L, Lluberas RA, Armentano RL (2012) Health informatics design for assisted diagnosis of subclinical atherosclerosis, structural, and functional arterial age calculus and patient-specific cardiovascular risk evaluation. IEEE Trans Inf Technol Biomed 16(5):943–951CrossRefPubMedGoogle Scholar
  11. 11.
    Santana DB, Zócalo YA, Armentano RL (2012) Integrated e-health approach based on vascular ultrasound and pulse wave analysis for asymptomatic atherosclerosis detection and cardiovascular risk stratification in the community. IEEE Trans Inf Technol Biomed 16(2):287–294CrossRefPubMedGoogle Scholar
  12. 12.
    National High Blood Pressure Education Program Working Group in High Blood Pressure in Children and Adolescents (2004) The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 114(2):555–576CrossRefGoogle Scholar
  13. 13.
    Engelen L, Bossuyt J, Ferreira I, van Bortel LM, Reesink KD, Segers P, Stehouwer CD, Laurent S, Boutouyrie P, Reference Values for Arterial Measurements Collaboration (2015) Reference values for local arterial stiffness. Part A: carotid artery. J Hypertens 33(10):1981–1996CrossRefPubMedGoogle Scholar
  14. 14.
    Bossuyt J, Engelen L, Ferreira I, Stehouwer CD, Boutouyrie P, Laurent S, Segers P, Reesink K, Van Bortel LM, Reference Values for Arterial Measurements Collaboration (2015) Reference values for local arterial stiffness. Part B: femoral artery. J Hypertens 33(10):1997–2009CrossRefPubMedGoogle Scholar
  15. 15.
    WHO Multicentre Growth Reference Study Group (2006) WHO child growth standard based on length/height, weight, and age. Acta Paediatr 450:76–85Google Scholar
  16. 16.
    Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H (2006) Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 27(21):2588–2605CrossRefPubMedGoogle Scholar
  17. 17.
    Van Bortel LM, Laurent S, Boutouyrie P, Chowienczyk P, Cruickshank JK, De Backer T, Filipovsky J, Huybrechts S, Mattace-Raso FUS, Protogerou AD, Schillaci G, Segers P, Vermeersch S, Weber T (2012) Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens 30(3):445–448CrossRefPubMedGoogle Scholar
  18. 18.
    Shirai K, Utino J, Otsuka K, Takata M (2006) A novel blood pressure-independent arterial wall stiffness parameter; cardio-ankle vascular index (CAVI). J Atheroscler Thromb 13(2):101–107CrossRefPubMedGoogle Scholar
  19. 19.
    Tan I, Spronck B, Kiat H, Barin E, Reesink KD, Delhaas T, Avolio AP, Butlin M (2016) Heart rate dependency of large artery stiffness. Hypertension 68(1):236–242CrossRefPubMedGoogle Scholar
  20. 20.
    Bia D, Zócalo Y, Farro I, Torrado J, Farro F, Florio L, Olascoaga A, Brum J, Alallón W, Negreira C, Lluberas R, Armentano RL (2011) Integrated evaluation of age-related changes in structural and functional vascular parameters used to assess arterial aging, subclinical atherosclerosis, and cardiovascular risk in Uruguayan adults: CUiiDARTE project. Int. J Hypertens 2011:587303CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Stein JH, Korcarz CE, Hurst RT, Lonn E, Kendall CB, Mohler ER, Najjar SS, Rembold CM, Post WS (2008) Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force Endorsed by the Society for Vascular. J Am Soc Echocardiogr 21(2):93–111CrossRefPubMedGoogle Scholar
  22. 22.
    Selamet Tierney ES, Gauvreau K, Jaff MR, Gal D, Nourse SE, Trevey S, O’Neill S, Baker A, Newburger JW, Colan SD (2015) Carotid artery intima-media thickness measurements in the youth: reproducibility and technical considerations. J Am Soc Echocardiogr 28(3):309–316CrossRefPubMedGoogle Scholar
  23. 23.
    Chen-Huan C, Nevo E, Fetics B, Pak PH, Yin FC, Lowell MW, Kass DA (1997) Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure. validation of generalized transfer function. Circulation 95(7):1827–1836CrossRefGoogle Scholar
  24. 24.
    Wilkinson IB, MacCallum H, Flint L, Cockcroft JR, Newby DE, Webb DJ (2000) The influence of heart rate on augmentation index and central arterial pressure in humans. J Physiol 525(1):263–270CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Reference Values for Arterial Stiffness’ Collaboration (2010) Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur Heart J 31(19):2338–2350CrossRefGoogle Scholar
  26. 26.
    Nichols WW, O’Rourke MF, Vlachlopoulos C (2011) Mcdonaldʼs blood flow in arteries. Hodder Arnold, London, pp 411–446Google Scholar
  27. 27.
    Van der Heijden-Spek JJ, Staessen JA, Fagard RH, Hoeks AP, Boudier HA, van Bortel LM (2000) Effect of age on brachial artery wall properties differs from the aorta and is gender dependent: a population study. Hypertension 35(2):637–642CrossRefPubMedGoogle Scholar
  28. 28.
    García-Espinosa V, Curcio S, Marotta M, Castro JM, Arana M, Peluso G, Chiesa P, Giachetto G, Bia D, Zócalo Y (2016) Changes in central aortic pressure levels, wave components and determinants associated with high peripheral blood pressure states in childhood: analysis of hypertensive phenotype. Pediatr Cardiol 37(7):1340–1350CrossRefPubMedGoogle Scholar
  29. 29.
    Litwin M, Feber J, Ruzicka M. (2106) Vascular aging: lessons from pediatric hypertension. Can J Cardiol 32(5):642–649Google Scholar
  30. 30.
    Phillips AA, Chirico D, Coverdale NS, Fitzgibbon LK, Shoemaker JK, Wade TJ, Cairney J, O’Leary DD (2015) The association between arterial properties and blood pressure in children. Appl Physiol Nutr Metab 40(1):72–78CrossRefPubMedGoogle Scholar
  31. 31.
    Stoner L, Faulkner J, Westrupp N, Lambrick D (2015) Sexual differences in central arterial wave reflection are evident in prepubescent children. J Hypertens 33(2):304–307CrossRefPubMedGoogle Scholar
  32. 32.
    Nethononda RM, Lewandowski AJ, Stewart R, Kylinterias I, Whitworth P, Francis J, Leeson P, Watkins H, Neubauer S, Rider OJ (2015) Gender specific patterns of age-related decline in aortic stiffness: a cardiovascular magnetic resonance study including normal ranges. J Cardiovasc Magn Reson 19(17):20CrossRefGoogle Scholar
  33. 33.
    Youn YJ, Lee NS, Kim JY, Lee JW, Sung JK, Ahn SG, You BS, Lee SH, Yoon J, Choe KH, Koh SB, Park JK (2011) Normative values and correlates of mean common carotid intima-media thickness in the Korean rural middle-aged population: the atherosclerosis risk of rural areas in Korea general population (ARIRANG) study. J Korean Med Sci 26(3):365–371CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    García-Espinosa V, Curcio S, Castro JM, Arana M, Giachetto G, Chiesa P, Zócalo Y, Bia D (2016) Children and adolescent obesity associates with pressure-dependent and age-related increase in carotid and femoral arteries’ stiffness and not in brachial artery, indicative of nonintrinsic arterial wall alteration. Int J Vasc Med 4916246Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • S. Curcio
    • 1
  • V. García-Espinosa
    • 1
  • J. M. Castro
    • 1
  • G. Peluso
    • 1
  • M. Marotta
    • 1
    • 2
  • M. Arana
    • 3
  • P. Chiesa
    • 4
  • G. Giachetto
    • 3
  • D. Bia
    • 1
  • Yanina Zócalo
    • 1
  1. 1.Physiology Department, School of Medicine, Centro Universitario de Investigación, Innovación y Diagnóstico Arterial (CUiiDARTE)Republic UniversityMontevideoUruguay
  2. 2.Basic Medicine Department, Faculty of Medicine, Clinical HospitalRepublic UniversityMontevideoUruguay
  3. 3.Clínica Pediátrica “C”, Centro Hospitalario Pereira RossellASSE - Republic UniversityMontevideoUruguay
  4. 4.Servicio de Cardiología Pediátrica, Centro Hospitalario Pereira RossellASSE-Ministry of Public HealthMontevideoUruguay

Personalised recommendations