Advertisement

Pediatric Cardiology

, Volume 38, Issue 3, pp 539–546 | Cite as

Institution of Veno-arterial Extracorporeal Membrane Oxygenation Does Not Lead to Increased Wall Stress in Patients with Impaired Myocardial Function

  • Andrew M. Koth
  • David M. Axelrod
  • Sushma Reddy
  • Stephen J. Roth
  • Theresa A. Tacy
  • Rajesh Punn
Original Article

Abstract

The effect of veno-arterial extracorporeal membrane oxygenation (VA ECMO) on wall stress in patients with cardiomyopathy, myocarditis, or other cardiac conditions is unknown. We set out to determine the circumferential and meridional wall stress (WS) in patients with systemic left ventricles before and during VA ECMO. We established a cohort of patients with impaired myocardial function who underwent VA ECMO therapy from January 2000 to November 2013. Demographic and clinical data were collected and inotropic score calculated. Measurements were taken on echocardiograms prior to the initiation of VA ECMO and while on full-flow VA ECMO, in order to derive wall stress (circumferential and meridional), VCFc, ejection fraction, and fractional shortening. A post hoc sub-analysis was conducted, separating those with pulmonary hypertension (PH) and those with impaired systemic output. Thirty-three patients met inclusion criteria. The patients’ median age was 0.06 years (range 0–18.7). Eleven (33%) patients constituted the organ failure group (Gr2), while the remaining 22 (66%) patients survived to discharge (Gr1). WS and all other echocardiographic measures were not different when comparing patients before and during VA ECMO. Ejection and shortening fraction, WS, and VCFc were not statistically different comparing the survival and organ failure groups. The patients’ position on the VCFc–WS curve did not change after the initiation of VA ECMO. Those with PH had decreased WS as well as increased EF after ECMO initiation, while those with impaired systemic output showed no difference in those parameters with initiation of ECMO. The external workload on the myocardium as indicated by WS is unchanged by the institution of VA ECMO support. Furthermore, echocardiographic measures of cardiac function do not reflect the changes in ventricular performance inherent to VA ECMO support. These findings are informative for the interpretation of echocardiograms in the setting of VA ECMO. ECMO may improve ventricular mechanics in those with PH as the primary diagnosis.

Keywords

ECMO Echo Echocardiography Surgery 

Notes

Compliance with Ethical Standards

Conflict of interest

None.

References

  1. 1.
    Delmo Walter EM, Alexi-Meskishvili V, Huebler M, Loforte A, Stiller B, Weng Y et al (2010) Extracorporeal membrane oxygenation for intraoperative cardiac support in children with congenital heart disease. Interact CardioVasc Thorac Surg 10:753–758CrossRefPubMedGoogle Scholar
  2. 2.
    Chauhan S, Malik M, Malik V, Chauhan Y, Kiran U, Bisoi AK (2011) Extra corporeal membrane oxygenation after pediatric cardiac surgery: a 10 year experience. Ann Card Anaesth 14:19–24CrossRefPubMedGoogle Scholar
  3. 3.
    Skinner SC, Iocono JA, Ballard HO, Turner MD, Ward AN, Davenport DL et al (2012) Improved survival in venovenous vs venoarterial extracorporeal membrane oxygenation for pediatric noncardiac sepsis patients: a study of the Extracorporeal Life Support Organization registry. J Pediatr Surg 47:63–67CrossRefPubMedGoogle Scholar
  4. 4.
    Hu W, Mao S, Hu W, Zhu Y, Liu C (2011) ECMO support in a child with acute fulminant myocarditis. Indian J Pediatr 78(5):609–612CrossRefPubMedGoogle Scholar
  5. 5.
    Nahum E, Dagan O, Lev A, Shukrun G, Amir G, Frenkel G, Katz J, Michel B, Birk E (2010) Favorable outcome of pediatric fulminant myocarditis supported by extracorporeal membranous oxygenation. Pediatr Cardiol 31(7):1059–1063CrossRefPubMedGoogle Scholar
  6. 6.
    Santiago A, Ramos I, Quintana C (2004) Extracorporeal membrane oxygenation: successful bridge to pediatric heart transplantation. P R Health Sci J 23(1):59–63PubMedGoogle Scholar
  7. 7.
    Kinsella JP, McCurnin DC, Clark RH, Lally KP, Null DM Jr (1992) Cardiac performance in ECMO candidates: echocardiographic predictors for ECMO. J Pediatr Surg 27(1):44–47CrossRefPubMedGoogle Scholar
  8. 8.
    Karr SS, Martin GR, Short BL (1991) Cardiac performance in infants referred for extracorporeal membrane oxygenation. J Pediatr 118(3):437–442CrossRefPubMedGoogle Scholar
  9. 9.
    Riccabona M, Dacar D, Zobel G, Kuttnig-Haim M, Maurer U, Urlesberger B et al (1995) Sonographically guided cannula positioning for extracorporeal membrane oxygenation. Pediatr Radiol 25:643–645CrossRefPubMedGoogle Scholar
  10. 10.
    Katz WE, Jafar MZ, Mankad S, Keenan RJ, Martich GD (1995) Transesophageal echocardiographic identification of a malpositioned extracorporeal membrane oxygenation cannula. J Heart Lung Transplant 14:790–792PubMedGoogle Scholar
  11. 11.
    Moubarak G, Weiss N, Leprince P, Luyt CE (2008) Massive intraventricular thrombus complicating extracorporeal membrane oxygenation support. Can J Cardiol 24:e1CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Minor WR (1975) Arterial impedance as ventricular afterload. Circ Res 36:565–570CrossRefGoogle Scholar
  13. 13.
    Karliner JS, Gault JH, Eckberg D, Mullins CB, Ross J (1971) Mean velocity of fiber shortening: a simplified measure of left ventricular myocardial contractility. Circulation 44:323–333CrossRefPubMedGoogle Scholar
  14. 14.
    Colan SD, Borow KM, Neumann A (1984) Left ventricular end-systolic wall stress–velocity of fiber shortening relation: a load-independent index of myocardial contractility. J Am Coll Cardiol 4:715–724CrossRefPubMedGoogle Scholar
  15. 15.
    Martin GR, Short BL (1988) Doppler echocardiographic evaluation of cardiac performance in infants on prolonged extracorporeal membrane oxygenation. Am J Cardiol 62:929–934CrossRefPubMedGoogle Scholar
  16. 16.
    Kimball TR, Daniels SR, Weiss RG, Meyer RA, Hannon DW, Ryckman FC et al (1991) Changes in cardiac function during extracorporeal membrane oxygenation for persistent pulmonary hypertension in the newborn infant. J Pediatr 118:431–436CrossRefPubMedGoogle Scholar
  17. 17.
    Berdjis F, Takahashi M, Lewis AB (1992) Left ventricular performance in neonates on extracorporeal membrane oxygenation. Pediatr Cardiol 13:141–145PubMedGoogle Scholar
  18. 18.
    Tanke RB, Daniels O, van Heijst AF, van Lier H, Festen C (2005) Cardiac dimensions during extracorporeal membrane oxygenation. Cardiol Young 15:373–378CrossRefPubMedGoogle Scholar
  19. 19.
    Lowe HJ, Ferris TA, Hernandez PM, Weber SC (2009) STRIDE—an integrated standards-based translational research informatics platform. AMIA Annu Symp Proc 2009:391–395PubMedPubMedCentralGoogle Scholar
  20. 20.
    Gaies MG, Gurney JG, Yen AH, Napoli ML, Gajarski RJ, Ohye RG, Charpie JR, Hirsch JC (2010) Vasoactive-inotropic score as a predictor of morbidity and mortality in infants after cardiopulmonary bypass. Pediatric Crit Care Med 11:234–238CrossRefGoogle Scholar
  21. 21.
    Wyatt HL, Meerbaum S, Heng MK, Gueret P, Corday E (1980) Cross-sectional echocardiography. III. Analysis of mathematic models for quantifying volume of symmetric and asymmetric left ventricles. Am Heart J 100:821–828CrossRefPubMedGoogle Scholar
  22. 22.
    Bavaria JE, Ratcliffe MB, Gupta KB, Wenger RK, Bogen DK, Edmunds LH Jr (1988) Changes in left ventricular systolic wall stress during biventricular circulatory assistance. Ann Thorac Surg 45:526–532CrossRefPubMedGoogle Scholar
  23. 23.
    Kapur NK, Paruchurri V, Urbano-Morales JA, Machey EE, Daly GH, Quiao X, Pandian N, Perides G, Karas RH (2013) Mechanically unloading the left ventricle before coronary reperfusion reduces left ventricular wall stress and myocardial infarct size. Circulation 128:328–336CrossRefPubMedGoogle Scholar
  24. 24.
    Punn R, Behzadian F, Tacy TA (2012) Tissue Doppler-derived measurement of isovolumic myocardial contraction in the pediatric population. Pediatr Cardiol 33(5):720–727CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Andrew M. Koth
    • 1
  • David M. Axelrod
    • 1
  • Sushma Reddy
    • 1
  • Stephen J. Roth
    • 1
  • Theresa A. Tacy
    • 1
  • Rajesh Punn
    • 1
  1. 1.Division of Pediatric Cardiology, Department of Pediatrics, Lucile Packard Children’s Hospital at StanfordStanford University School of MedicinePalo AltoUSA

Personalised recommendations