Advertisement

Pediatric Cardiology

, Volume 37, Issue 4, pp 686–695 | Cite as

Echocardiographic Reference Values for Right Atrial Size in Children with and without Atrial Septal Defects or Pulmonary Hypertension

  • Martin Koestenberger
  • Ante Burmas
  • William Ravekes
  • Alexander Avian
  • Andreas Gamillscheg
  • Gernot Grangl
  • Marlene Grillitsch
  • Georg Hansmann
Original Article

Abstract

Right atrial (RA) size may become a very useful, easily obtainable, echocardiographic variable in patients with congenital heart disease (CHD) with right-heart dysfunction; however, according studies in children are lacking. We investigated growth-related changes of RA dimensions in healthy children. Moreover, we determined the predictive value of RA variables in both children with secundum atrial septal defect (ASD) and children with pulmonary hypertension (PH) secondary to CHD (PH-CHD). This is a prospective study in 516 healthy children, in 80 children with a secundum ASD (>7 mm superior–inferior dimension), and in 42 children with PH-CHD. We determined three RA variables, i.e., end-systolic major-axis length, end-systolic minor-axis length, and end-systolic area, stratified by age, body weight, length, and surface area. RA end-systolic length and area z scores were increased in children with ASD and PH-CHD when compared to those variables in the healthy control population. Using the Youden Index to determine the best cutoff scores in sex- and age-specific RA dimensions, we observed a sensitivity and specificity up to 94 and 91 %, respectively, in ASD children and 98 and 94 %, respectively, in PH-CHD children. We provide normal values (z scores −2 to +2) for RA size and area in a representative, large pediatric cohort. Enlarged RA variables with scores >+2 were predictive of secundum ASD and PH-CHD. Two-dimensional determination of RA size can identify enlarged RAs in the setting of high volume load (ASD) or pressure load (PH-CHD).

Keywords

Atrial septal defect Children End-systolic length and area Pulmonary hypertension secondary to congenital heart disease Right atrial enlargement 

Notes

Compliance with ethical standards

Conflict of interest

All authors state that there are no financial, personal, or other relationships with other people or organizations that could inappropriately influence our work to disclose.

Supplementary material

246_2015_1332_MOESM1_ESM.docx (25 kb)
Supplemental Table A.) Body weight (BW) related and B.) body length (BL) related z scores for RA area, major-axis and minor-axis length are shown. The values in the table are shown as follows: For each BW group, the estimated mean and ± 2 z scores according to the regression analysis of the RA mean, length, and minor axis are shown. The range ± 2 z scores represent the expectable normal intervals of deviation for a certainty level of 95 % (DOCX 24 kb)

References

  1. 1.
    Alghamdi MH, Grosse-Wortmann L, Ahmad N, Mertens L, Friedberg MK (2012) Can simple echocardiographic measures reduce the number of cardiac magnetic resonance imaging studies to diagnose right ventricular enlargement in congenital heart disease? J Am Soc Echocardiogr 25:518–523CrossRefPubMedGoogle Scholar
  2. 2.
    Bustamante-Labarta M, Perrone S, De La Fuente RL, Stutzbach P, De La Hoz RP, Torino A, Favaloro R (2002) Right atrial size and tricuspid regurgitation severity predict mortality or transplantation in primary pulmonary hypertension. J Am Soc Echocardiogr 15:1160–1164CrossRefPubMedGoogle Scholar
  3. 3.
    Cantinotti M (2013) Current pediatric nomograms are only one source of error for quantification in pediatric echocardiography: what to expect from future research. J Am Soc Echocardiogr 26:919CrossRefPubMedGoogle Scholar
  4. 4.
    Cantinotti M, Scalese M, Murzi B, Assanta N, Spadoni I, De Lucia V et al (2014) Echocardiographic nomograms for chamber diameters and areas in Caucasian children. J Am Soc Echocardiogr 27:1279–1292CrossRefPubMedGoogle Scholar
  5. 5.
    Cantinotti M, Assanta N, Murzi B, Iervasi G, Spadoni I (2014) Echocardiographic definition of restrictive patent foramen ovale (PFO). Heart 100:264–265CrossRefPubMedGoogle Scholar
  6. 6.
    Cioffi G, de Simone G, Mureddu G, Tarantini L, Stefenelli C (2007) Right atrial size and function in patients with pulmonary hypertension associated with disorders of respiratory system or hypoxemia. Eur J Echocardiogr 8:322–331CrossRefPubMedGoogle Scholar
  7. 7.
    Fukuda Y, Tanaka H, Motoji Y, Ryo K, Sawa T, Imanishi J et al (2014) Utility of combining assessment of right ventricular function and right atrial remodeling as a prognostic factor for patients with pulmonary hypertension. Int J Cardiovasc Imaging 30:1269–1277CrossRefPubMedGoogle Scholar
  8. 8.
    Gatzoulis MA, Alonso-Gonzalez R, Beghetti M (2009) Pulmonary arterial hypertension in paediatric and adult patients with congenital heart disease. Eur Respir Rev 18:154–161CrossRefPubMedGoogle Scholar
  9. 9.
    Gaynor SL, Maniar HS, Prasad SM, Steendijk P, Moon MR (2005) Reservoir and conduit function of right atrium: impact on right ventricular filling and cardiac output. Am J Physiol Heart Circ Physiol 288:H2140–H2145CrossRefPubMedGoogle Scholar
  10. 10.
    Grapsa J, Gibbs JS, Cabrita IZ, Watson GF, Pavlopoulos H, Dawson D et al (2012) The association of clinical outcome with right atrial and ventricular remodeling in patients with pulmonary arterial hypertension: study with real-time three-dimensional echocardiography. Eur Heart J Cardiovasc Imaging 13:666–672CrossRefPubMedGoogle Scholar
  11. 11.
    Grünig E, Barner A, Bell M, Claussen M, Dandel M, Dumitrescu D et al (2011) Non-invasive diagnosis of pulmonary hypertension: ESC/ERS guidelines with updated commentary of the Cologne Consensus Conference 2011. Int J Cardiol 154(suppl 1):S3–S12CrossRefPubMedGoogle Scholar
  12. 12.
    Kassem E, Humpl T, Friedberg MK (2013) Prognostic significance of 2-dimensional, M-mode, and Doppler echo indices of right ventricular function in children with pulmonary arterial hypertension. Am Heart J 165:1024–1031CrossRefPubMedGoogle Scholar
  13. 13.
    Kutty S, Li L, Hasan R, Peng Q, Rangamani S, Danford DA (2014) Systemic venous diameters, collapsibility indices, and right atrial measurements in normal pediatric subjects. J Am Soc Echocardiogr 27:155–162CrossRefPubMedGoogle Scholar
  14. 14.
    Lam YY, Fang F, Yip GW, Li ZA, Yang Y, Yu CM (2012) New pulmonary vein Doppler echocardiographic index predicts significant interatrial shunting in secundum atrial septal defect. Int J Cardiol 160:59–65CrossRefPubMedGoogle Scholar
  15. 15.
    Lopez L, Colan SD, Frommelt PC, Ensing G, Kendall K, Younoszai A et al (2010) Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr 23:465–495CrossRefPubMedGoogle Scholar
  16. 16.
    Lopez-Candales A, Palm DS, Lopez FR, Perez R, Candales MD (2015) Importance of end-diastolic rather than end-systolic right atrial size in chronic pulmonary hypertension. Echocardiography. doi: 10.1111/echo.12968 Google Scholar
  17. 17.
    Marra AM, Egenlauf B, Ehlken N, Fischer C, Eichstaedt C, Nagel C et al (2015) Change of right heart size and function by long-term therapy with riociguat in patients with pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Int J Cardiol 195:19–26CrossRefPubMedGoogle Scholar
  18. 18.
    Masuyama T, Kodama K, Kitabatake A, Sato H, Nanto S, Inoue M (1986) Continuous-wave Doppler echocardiographic detection of pulmonary regurgitation and its application to noninvasive estimation of pulmonary artery pressure. Circulation 74:484–492CrossRefPubMedGoogle Scholar
  19. 19.
    McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR et al (2009) American College of Cardiology Foundation Task Force on Expert Consensus Documents; American Heart Association; American College of Chest Physicians; American Thoracic Society, Inc; Pulmonary Hypertension Association. ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol 53:1573–1619CrossRefPubMedGoogle Scholar
  20. 20.
    McMahon CJ, Feltes TF, Fraley JK, Bricker JT, Grifka RG, Tortoriello TA et al (2002) Natural history of growth of secundum atrial septal defects and implications for transcatheter closure. Heart 87:256–259CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    McQuillan BM, Picard MH, Leavitt M, Weyman AE (2001) Clinical correlates and reference intervals for pulmonary artery systolic pressure among echocardiographically normal subjects. Circulation 104:2797–2802CrossRefPubMedGoogle Scholar
  22. 22.
    Monfredi O, Luckie M, Mirjafari H, Willard T, Buckley H, Griffiths L et al (2013) Percutaneous device closure of atrial septal defect results in very early and sustained changes of right and left heart function. Int J Cardiol 167:1578–1584CrossRefPubMedGoogle Scholar
  23. 23.
    Mosteller RD (1987) Simplified calculation of body-surface area. N Engl J Med 317:1098PubMedGoogle Scholar
  24. 24.
    Okumura K, Slorach C, Mroczek D, Dragulescu A, Mertens L, Redington AN, Friedberg M (2014) Right ventricular diastolic performance in children with pulmonary arterial hypertension associated with congenital heart disease: correlation of echocardiographic parameters with invasive reference standards by high-fidelity micromanometer catheter. Circ Cardiovasc Imaging 7:491–501CrossRefPubMedGoogle Scholar
  25. 25.
    Ploegstra MJ, Roofthooft MT, Douwes JM, Bartelds B, Elzenga NJ, van de Weerd D et al (2015) Echocardiography in pediatric pulmonary arterial hypertension: early study on assessing disease severity and predicting outcome. Circ Cardiovasc Imaging. doi: 10.1161/CIRCIMAGING.113.000878 PubMedGoogle Scholar
  26. 26.
    Raymond RJ, Hinderliter AL, Willis PW, Ralph D, Caldwell EJ, Williams W et al (2002) Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J Am Coll Cardiol 39:1214–1219CrossRefPubMedGoogle Scholar
  27. 27.
    Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23:685–713CrossRefPubMedGoogle Scholar
  28. 28.
    Sato T, Tsujino I, Oyama-Manabe N, Ohira H, Ito YM, Yamada A et al (2013) Right atrial volume and phasic function in pulmonary hypertension. Int J Cardiol 168:420–426CrossRefPubMedGoogle Scholar
  29. 29.
    Shiina Y, Funabashi N, Lee K, Daimon M, Sekine T, Kawakubo M et al (2009) Right atrium contractility and right ventricular diastolic function assessed by pulsed tissue Doppler imaging can predict brain natriuretic peptide in adults with acquired pulmonary hypertension. Int J Cardiol 135:53–59CrossRefPubMedGoogle Scholar
  30. 30.
    Simonneau G, Robbins IM, Beghetti M, Channick RN, Delcroix M, Denton CP et al (2009) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 54(Suppl):S43–S54CrossRefPubMedGoogle Scholar
  31. 31.
    Tatani SB, Carvalho A, Andriolo A, Rabelo R, Campos O, Moises V (2010) Echocardiographic parameters and brain natriuretic peptide in patients after surgical repair of tetralogy of Fallot. Echocardiography 27:442–447CrossRefPubMedGoogle Scholar
  32. 32.
    Tonelli AR, Conci D, Tamarappoo BK, Newman J, Dweik RA (2014) Prognostic value of echocardiographic changes in patients with pulmonary arterial hypertension receiving parenteral prostacyclin therapy. J Am Soc Echocardiogr 27:733–741CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Willis J, Augustine D, Shah R, Stevens C, Easaw J (2012) Right ventricular normal measurements: time to index? J Am Soc Echocardiogr 25:1259–1267CrossRefPubMedGoogle Scholar
  34. 34.
    Yock PG, Popp RL (1984) Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation. Circulation 70:657–662CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Martin Koestenberger
    • 1
  • Ante Burmas
    • 1
  • William Ravekes
    • 2
  • Alexander Avian
    • 3
  • Andreas Gamillscheg
    • 1
  • Gernot Grangl
    • 1
  • Marlene Grillitsch
    • 1
  • Georg Hansmann
    • 4
  1. 1.Division of Pediatric Cardiology, Department of PediatricsMedical University GrazGrazAustria
  2. 2.Division of Pediatric CardiologyJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Institute for Medical Informatics, Statistics and DocumentationMedical University GrazGrazAustria
  4. 4.Department of Pediatric Cardiology and Critical CareHannover Medical SchoolHannoverGermany

Personalised recommendations