Advertisement

Pediatric Cardiology

, Volume 36, Issue 4, pp 851–861 | Cite as

Cardiovascular Magnetic Resonance Imaging-Based Computational Fluid Dynamics/Fluid–Structure Interaction Pilot Study to Detect Early Vascular Changes in Pediatric Patients with Type 1 Diabetes

  • Margaret M. SamynEmail author
  • Ronak Dholakia
  • Hongfeng Wang
  • Jennifer Co-Vu
  • Ke Yan
  • Michael E. Widlansky
  • John F. LaDisa
  • Pippa Simpson
  • Ramin Alemzadeh
Original Article

Abstract

We hypothesized that pediatric patients with type 1 diabetes have cardiac magnetic resonance (CMR) detectable differences in thoracic aortic wall properties and hemodynamics leading to significant local differences in indices of wall shear stress, when compared with age-matched control subjects without diabetes. Pediatric patients with type 1 diabetes were recruited from Children’s Hospital of Wisconsin and compared with controls. All underwent morning CMR scanning, 4-limb blood pressure, brachial artery reactivity testing, and venipuncture. Patient-specific computational fluid dynamics modeling with fluid–structure interaction, based on CMR data, determined regional time-averaged wall shear stress (TAWSS) and oscillatory shear index (OSI). Twenty type 1 diabetic subjects, median age 15.8 years (11.6–18.4) and 8 controls 15.4 years (10.3–18.2) were similar except for higher glucose, hemoglobin A1c, and triglycerides for type 1 diabetic subjects. Lower flow-mediated dilation was seen for those with type 1 diabetes (6.5) versus controls (7.8), p = 0.036. For type 1 diabetic subjects, the aorta had more regions with high TAWSS when compared to controls. OSI maps appeared similar. Flow-mediated dilation positively correlated with age at diabetes diagnosis (r = 0.468, p = 0.038) and hemoglobin A1c (r = 0.472, p = 0.036), but did not correlate with aortic distensibility, TAWSS, or OSI. TAWSS did not correlate with any clinical parameter for either group. CMR shows regional differences in aortic wall properties for young diabetic patients. Some local differences in wall shear stress indices were also observed, but a longitudinal study is now warranted.

Keywords

Diabetes Magnetic resonance imaging Pediatrics 

Notes

Acknowledgments

The authors would like to acknowledge Stacy Leibham (Children’s Hospital of Wisconsin) for her assistance with CMR scanning, David J. Quam, MS (Marquette University) for writing scripts for CFD quantification, and Mara Koffarnus, MA (Medical College of Wisconsin) for help in preparing this manuscript for submission. This research was supported by a Children’s Research Institute Pilot Innovative Research grant.

Conflict of interest

The authors declare they have no conflict of interest.

Ethical Standards

This study has been approved by the Children’s Hospital of Wisconsin Institutional Review Board and performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. All study subjects and/or their parents, gave their informed consent prior to their inclusion in the study. If the child was between the ages of 14 and 17, assent was also obtained.

References

  1. 1.
    Aggoun Y, Szezepanski I, Bonnet D (2005) Noninvasive assessment of arterial stiffness and risk of atherosclerotic events in children. Pediatr Res 58:173–178. doi: 10.1203/01.PDR.0000170900.35571.CB CrossRefPubMedGoogle Scholar
  2. 2.
    Aquaro GD, Cagnolo A, Tiwari KK, Todiere G, Bevilacqua S, Di Bella G, Ait-Ali L, Festa P, Glauber M, Lombardi M (2013) Age-dependent changes in elastic properties of thoracic aorta evaluated by magnetic resonance in normal subjects. Interact CardioVasc Thorac Surg 17:674–679. doi: 10.1093/icvts/ivt261 CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Babar GS, Zidan H, Widlansky ME, Das E, Hoffmann RG, Daoud M, Alemzadeh R (2011) Impaired endothelial function in preadolescent children with type 1 diabetes. Diabetes Care 34:681–685. doi: 10.2337/dc10-2134 CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Celermajer DS, Sorensen KE, Gooch VM, Spiegelhalter DJ, Miller OI, Sullivan ID, Lloyd JK, Deanfield JE (1992) Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 340:1111–1115CrossRefPubMedGoogle Scholar
  5. 5.
    De Michele M, Iannuzzi A, Salvato A, Pauciullo P, Gentile M, Iannuzzo G, Panico S, Pujia A, Bond GM, Rubba P (2007) Impaired endothelium-dependent vascular reactivity in patients with familial combined hyperlipidaemia. Heart 93(1):78–81. doi: 10.1136/hrt.2006.093278 CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Dyson KS, Shoemaker JK, Hughson RL (2006) Effect of acute sympathetic nervous system activation on flow-mediated dilation of brachial artery. Am J Physiol Heart Circ Physiol 290:H1446–H1453CrossRefPubMedGoogle Scholar
  7. 7.
    Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Eng 195:5685–5706. doi: 10.1016/j.cma.2005.11.011 CrossRefGoogle Scholar
  8. 8.
    Forbat SM, Mohiaddin RH, Yang GZ, Firmin DN, Underwood SR (1995) Measurement of regional aortic compliance by MR imaging: a study of reproducibility. J Magn Reson Imaging 5:635–639. doi: 10.1002/jmri.1880050604 CrossRefPubMedGoogle Scholar
  9. 9.
    Francois CJ, Tuite D, Deshpande V, Jerecic R, Weale P, Carr J (2008) Unenhanced MR angiography of the thoracic aorta: initial clinical evaluation. Am J Roentgenol 190(4):902–906. doi: 10.2214/AJR.07.2997 CrossRefGoogle Scholar
  10. 10.
    Ghiadoni L, Huang Y, Magagna A, Buralli S, Taddei S, Salvetti A (2001) Effect of acute blood pressure reduction on endothelial function in the brachial artery of patients with essential hypertension. J Hypertens 19(3 Pt 2):547–551CrossRefPubMedGoogle Scholar
  11. 11.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB (2014) Heart Disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129:e28–e292. doi: 10.1161/01.cir.0000441139.02102.80 CrossRefPubMedGoogle Scholar
  12. 12.
    Goldberg RB, Mellies MJ, Sacks FM, Moyé LA, Howard BV, Howard WJ, Davis BR, Cole TG, Pfeffer MA, Braunwald E, for the CARE Investigators (1998) Cardiovascular events and their reduction with pravastatin in diabetic and glucose-intolerant myocardial infarction survivors with average cholesterol levels: subgroup analyses in the cholesterol and recurrent events (CARE) trial. Circulation 98:2513–2519. doi: 10.1161/01.CIR.98.23.2513 CrossRefPubMedGoogle Scholar
  13. 13.
    Grzelak P, Czupryniak L, Olszycki M, Majos A, Stefańczyk L (2011) Age effect on vascular reactivity in type 1 diabetes. Diabet Med 28(7):833–837. doi: 10.1111/j.1464-5491.2011.03277.x CrossRefPubMedGoogle Scholar
  14. 14.
    Haller MJ, Samyn M, Nichols WW, Brusko T, Wasserfall C, Schwartz RF, Atkinson M, Shuster JJ, Pierce GL, Silverstein JH (2004) Radial artery tonometry demonstrates arterial stiffness in children with type 1 diabetes. Diabetes Care 27:2911–2917. doi: 10.2337/diacare.27.12.2911 CrossRefPubMedGoogle Scholar
  15. 15.
    Herman WH, Alexander CM, Cook JR, Boccuzzi SJ, Musliner TA, Pedersen TR, Kjekshus J, Pyörälä K (1999) Effect of simvastatin treatment on cardiovascular resource utilization in impaired fasting glucose and diabetes. Findings from the Scandinavian Simvastatin Survival Study. Diabetes Care 22:1771–1778. doi: 10.2337/diacare.22.11.1771 CrossRefPubMedGoogle Scholar
  16. 16.
    Hoogeveen EK, Kostense PJ, Beks PJ, Mackaay AJC, Jakobs C, Bouter LM, Heine RJ, Stehouwer CDA (1998) Hyperhomocysteinemia is associated with an increased risk of cardiovascular disease, especially in non-insulin-dependent diabetes mellitus: a population-based study. Arterioscler Thromb Vasc Biol 18:133–138. doi: 10.1161/01.ATV.18.1.133 CrossRefPubMedGoogle Scholar
  17. 17.
    Järvisalo MJ, Rönnemaa T, Volanen I, Kaitosaari T, Kallio K, Hartiala JJ, Irjala K, Viikari JS, Simell O, Raitakari OT (2002) Brachial artery dilatation responses in healthy children and adolescents. Am J Physiol Heart Circ Physiol 282:H87–H92PubMedGoogle Scholar
  18. 18.
    Johnstone MT, Creager SJ, Scales KM, Cusco JA, Lee BK, Creager MA (1993) Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation 88(6):2510–2516. doi: 10.1161/01.cir.88.6.2510 CrossRefPubMedGoogle Scholar
  19. 19.
    Kaiser T, Kellenberger CJ, Albisetti M, Bergstrasser E, Valsangiacomo Buechel ER (2008) Normal values for aortic diameters in children and adolescents-assessment in vivo by contrast enhanced CMR-angiography. J Cardiovas Magn Reson 10:56. doi: 10.1186/1532-429X-10-56 CrossRefGoogle Scholar
  20. 20.
    Kizhakekuttu TJ, Gutterman DD, Phillips SA, Jurva JW, Arthur EI, Das E, Widlansky ME (2010) Measuring FMD in the brachial artery: how important is QRS gating? J Appl Physiol 109:959–965. doi: 10.1152/japplphysiol.00532.2010 CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Kwon S, Feinstein JA, Dholakia RJ, LaDisa JF Jr (2014) Quantification of local hemodynamic alterations cuased by virtual implantation of three commercially available stents for treatment of aortic coarctation. Pediatr Cardiol 35(4):732–740. doi: 10.1007/s00246-013-0845-7 CrossRefPubMedGoogle Scholar
  22. 22.
    LaDisa JFJ, Figueroa CA, Vignon-Clementel I, Kim HJ, Xiao N, Ellwein LM, Chan FP, Feinstein JA, Taylor CA (2011) Computational simulations for aortic coarctation: representative results from a sampling of patients. J Biomech Eng 133:091008. doi: 10.1115/1.4004996 CrossRefPubMedGoogle Scholar
  23. 23.
    LaDisa JFJ, Dholakia RJ, Figueroa CA, Vignon-Clementel IE, Chan FP, Samyn MM, Cava JR, Taylor CA, Feinstein JA (2011) Computational simulations demonstrate altered wall shear stress in aortic coarctation patients treated by resection with end-to-end anastomosis. Congenit Heart Dis 6:432–443. doi: 10.1111/j.1747-0803.2011.00553.x CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Laskey WKP (1990) Estimation of total systemic arterial compliance in humans. J Appl Physiol 69:112–119PubMedGoogle Scholar
  25. 25.
    Les A, Shadden S, Figueroa CA, Park J, Tedesco M, Herfkens R, Dalman R, Taylor C (2010) Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann Biomed Eng 38:1288–1313. doi: 10.1007/s10439-010-9949-x CrossRefPubMedGoogle Scholar
  26. 26.
    Mark P, Doyle A, Blyth K, Patel R, Weir R, Steedman T, Foster J, Dargie H, Jardine A (2008) Vascular function assessed with cardiovascular magnetic resonance predicts survival in patients with advanced chronic kidney disease. J Cardiovasc Magn Reson 10:39. doi: 10.1186/1532-429X-10-39 CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Mohiaddin RHF (1993) Age-related changes of human aortic flow wave velocity measured noninvasively by magnetic resonance imaging. J Appl Physiol 74:492–497PubMedGoogle Scholar
  28. 28.
    Müller J, Sahni O, Li X, Jansen KE, Shephard MS, Taylor CA (2005) Anisotropic adaptive finite element method for modelling blood flow. Comput Methods Biomech Biomed Eng 8:295–305. doi: 10.1080/10255840500264742 CrossRefGoogle Scholar
  29. 29.
    National Cholesterol Education Program (NCEP) (1992) Highlights of the report of the expert panel on blood cholesterol levels in children and adolescents. Pediatrics 89:495Google Scholar
  30. 30.
    Pasterkamp G, Galis ZS, de Kleijn DPV (2004) Expansive arterial remodeling: location, location, location. Arterioscler Thromb Vasc Biol 24:650–657. doi: 10.1161/01.ATV.0000120376.09047.fe CrossRefPubMedGoogle Scholar
  31. 31.
    Raitakari OT, Pitkänen O, Lehtimäki T, Lahdenperä S, Iida H, Ylä-Herttuala S, Luoma J, Mattila K, Nikkari T, Taskinen M, Viikari JSA, Knuuti J (1997) In vivo low density lipoprotein oxidation relates to coronary reactivity in young men. J Am Coll Cardiol 30:97–102. doi: 10.1016/S0735-1097(97)00103-4 CrossRefPubMedGoogle Scholar
  32. 32.
    Redheuil A, Yu W, Wu CO, Mousseaux E, de Cesare A, Yan R, Kachenoura N, Bluemke D, Lima JAC (2010) Reduced ascending aortic strain and distensibility: earliest manifestations of vascular aging in humans. Hypertension 55:319–326. doi: 10.1161/HYPERTENSIONAHA.109.141275 CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Rosengård-Bärlund M, Bernardi L, Fagerudd J, Mäntysaari M, Af-Björkesten CG, Lindholm H, Forsblom C, Wadé NJ, Groop P-H (2009) Early autonomic dysfunction in type 1 diabetes: a reversible disorder? Diabetologia 52:1164–1172. doi: 10.1007/s00125-009-1340-9 CrossRefPubMedGoogle Scholar
  34. 34.
    Sahni O, Müller J, Jansen KE, Shephard MS, Taylor CA (2006) Efficient anisotropic adaptive discretization of the cardiovascular system. Comput Methods Appl Mech Eng 195:5634–5655. doi: 10.1016/j.cma.2005.10.018 CrossRefGoogle Scholar
  35. 35.
    Soljanlahti S, Autti T, Hyttinen L, Vuorio AF, Keto P, Lauerma K (2008) Compliance of the aorta in two diseases affecting vascular elasticity, familial hypercholesterolemia and diabetes: a MRI study. Vasc Health Risk Manag 4:1103–1109. doi: 10.2147/VHRM.S3198 PubMedCentralPubMedGoogle Scholar
  36. 36.
    Stergiopulos NS (1999) Use of pulse pressure method for estimating total arterial compliance in vivo. Am J Physiol Heart Circ Physiol 276:H424–H428Google Scholar
  37. 37.
    Stergiopulos N, Young DF, Rogge TR (1992) Computer simulation of arterial flow with applications to arterial and aortic stenoses. J Biomech 25:1477–1488. doi: 10.1016/0021-9290(92)90060-E CrossRefPubMedGoogle Scholar
  38. 38.
    Taniguchi H, Momiyama Y, Fayad ZA, Ohmori R, Ashida K, Kihara T, Hara A, Arakawa K, Kameyama A, Noya K, Nagata M, Nakamura H, Ohsuzu F (2004) In vivo magnetic resonance evaluation of associations between aortic atherosclerosis and both risk factors and coronary artery disease in patients referred for coronary angiography. Am Heart J 148:137–143. doi: 10.1016/j.ahj.2004.03.008 CrossRefPubMedGoogle Scholar
  39. 39.
    Tawakol A, Omland T, Gerhard M, Wu JT, Creager MA (1997) Hyperhomocyst(e)inemia is associated with impaired endothelium-dependent vasodilation in humans. Circulation 95:1119–1121. doi: 10.1161/01.CIR.95.5.1119 CrossRefPubMedGoogle Scholar
  40. 40.
    The Diabetes Atorvastatin Lipid Intervention (DALI) Study Group (2001) The effect of aggressive versus standard lipid lowering by atorvastatin on diabetic dyslipidemia: the DALI study: a double-blind, randomized, placebo-controlled trial in patients with type 2 diabetes and diabetic dyslipidemia. Diabetes Care 24:1335–1341. doi: 10.2337/diacare.24.8.1335 CrossRefGoogle Scholar
  41. 41.
    Toikka JO, Niemi P, Ahotupa M, Niinikoski H, Viikari JSA, Rönnemaa T, Hartiala JJ, Raitakari OT (1999) Large-artery elastic properties in young men: relationships to serum lipoproteins and oxidized low-density lipoproteins. Arterioscler Thromb Vasc Biol 19:436–441. doi: 10.1161/01.ATV.19.2.436 CrossRefPubMedGoogle Scholar
  42. 42.
    Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng 195:3776–3796. doi: 10.1016/j.cma.2005.04.014 CrossRefGoogle Scholar
  43. 43.
    Voges I, Jerosch-Herold M, Hedderich J, Pardun E, Hart C, Gabbert D, Hansen J, Petko C, Kramer H, Rickers C (2012) Normal values of aortic dimensions, distensibility, and pulse wave velocity in children and young adults: a cross-sectional study. J Cardiovasc Magn Reson 14:77. doi: 10.1186/1532-429X-14-77 CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Ward MR, Pasterkamp G, Yeung AC, Borst C (2000) Arterial remodeling: mechanisms and clinical implications. Circulation 102:1186–1191. doi: 10.1161/01.CIR.102.10.1186 CrossRefPubMedGoogle Scholar
  45. 45.
    Wendell DC, Samyn MM, Cava JR, Ellwein LM, Krolikowski MM, Gandy KL, Pelech AN, Shadden SC, LaDisa JF Jr (2013) Including aortic valve morphology in computational fluid dynamics simulations: initial findings and application to aortic coarctation. Med Eng Phys 35:723–735. doi: 10.1016/j.medengphy.2012.07.015 CrossRefPubMedGoogle Scholar
  46. 46.
    Wentzel JJ, Corti R, Fayad ZA, Wisdom P, Macaluso F, Winkelman MO, Fuster V, Badimon JJ (2005) Does shear stress modulate both plaque progression and regression in the thoracic aorta? Human study using serial magnetic resonance imaging. J Am Coll Cardiol 45:846–854. doi: 10.1016/j.jacc.2004.12.026 CrossRefPubMedGoogle Scholar
  47. 47.
    Wotherspoon F, Laight DW, Browne DL, Turner C, Meeking DR, Allard SE, Munday LJ, Shaw KM, Cummings MH (2006) Plasma homocysteine, oxidative stress and endothelial function in patients with type 1 diabetes mellitus and microalbuminuria. Diabet Med 23:1350–1356. doi: 10.1111/j.1464-5491.2006.01980.x CrossRefPubMedGoogle Scholar
  48. 48.
    Yasmin CMM, Wallace S, Mackenzie IS, Cockcroft JR, Wilkinson IB (2004) C-reactive protein is associated with arterial stiffness in apparently healthy individuals. Arterioscler Thromb Vasc Biol 24:969–974. doi: 10.1161/01.ATV.zhq0504.0173 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Margaret M. Samyn
    • 1
    • 3
    Email author
  • Ronak Dholakia
    • 2
  • Hongfeng Wang
    • 3
  • Jennifer Co-Vu
    • 4
  • Ke Yan
    • 1
  • Michael E. Widlansky
    • 5
  • John F. LaDisa
    • 3
    • 5
    • 6
  • Pippa Simpson
    • 1
  • Ramin Alemzadeh
    • 7
  1. 1.Department of PediatricsMedical College of WisconsinMilwaukeeUSA
  2. 2.Stony Brook University Medical CenterStony BrookUSA
  3. 3.Department of Biomedical EngineeringMarquette UniversityMilwaukeeUSA
  4. 4.Congenital Heart Center and Department of PediatricsUniversity of Florida College of MedicineGainesvilleUSA
  5. 5.Department of MedicineMedical College of WisconsinMilwaukeeUSA
  6. 6.Biotechnology and Bioengineering CenterMedical College of WisconsinMilwaukeeUSA
  7. 7.Division of Pediatric EndocrinologyUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations