Pediatric Cardiology

, Volume 35, Issue 5, pp 879–887

Factors Associated with Serum B-Type Natriuretic Peptide in Infants with Single Ventricles

  • Ryan J. Butts
  • Victor Zak
  • Daphne Hsu
  • James Cnota
  • Steven D. Colan
  • David Hehir
  • Paul Kantor
  • Jami C. Levine
  • Renee Margossian
  • Marc Richmond
  • Anita Szwast
  • Derek Williams
  • Richard Williams
  • Andrew M. Atz
Original Article

Abstract

Data regarding the value of B-type natriuretic peptide (BNP) measurements in infants with a single-ventricle (SV) physiology are lacking. This analysis aimed to describe the BNP level changes in infants with an SV physiology before and after superior cavopulmonary connection (SCPC) surgery. Levels of BNP were measured by a core laboratory before SCPC (at 5.0 ± 1.6 months) and at the age of 14 months during a multicenter trial of angiotensin-converting enzyme inhibition therapy for infants with SV. Multivariable longitudinal analysis was used to model the associations between BNP levels and three sets of grouped variables (echocardiography, catheterization, growth). Multivariable analysis was performed to assess associations with patient characteristics at both visits. Associations between BNP levels and neurodevelopmental variables were investigated at the 14 month visit because neurodevelopmental assessment was performed only at this visit. The BNP level was significantly higher before SCPC (n = 173) than at the age of 14 months (n = 134). The respective median levels were 80.8 pg/ml (interquartile range [IQR], 35–187 pg/ml) and 34.5 pg/ml (IQR, 17–67 pg/ml) (p < 0.01). A BNP level higher than 100 pg/ml was present in 72 subjects (42 %) before SCPC and in 21 subjects (16 %) at the age of 14 months. In the 117 patients who had BNP measurements at both visits, the median BNP level decreased 32 pg/ml (IQR, 1–79 pg/ml) (p < 0.01). In the longitudinal multivariable analysis, higher BNP levels were associated with a higher end-systolic volume z-score (p = 0.01), a greater degree of atrioventricular (AV) valve regurgitation (p < 0.01), a lower weight z-score (p < 0.01), and a lower length z-score (p = 0.02). In multivariable analyses, a higher BNP level at the age of 14 months was associated with arrhythmia after SCPC surgery (p < 0.01), a prior Norwood procedure (p < 0.01), a longer hospital stay after SCPC surgery (p = 0.04), and a lower Bayley psychomotor developmental index (p = 0.02). The levels of BNP decreases in infants with SV from the pre-SCPC visit to the age of 14 months. A higher BNP level is associated with increased ventricular dilation in systole, increased AV valve regurgitation, impaired growth, and poorer neurodevelopmental outcomes. Therefore, BNP level may be a useful seromarker for identifying infants with SV at risk for worse outcomes.

Keywords

B-type natriuretic peptide BNP Single-ventricle physiology Superior cavopulmonary connection surgery Angiotensin-converting enzyme inhibition therapy SCPC Ventricular dilation 

References

  1. 1.
    Mukoyama M, Nakao K, Hosoda K, Suga S, Saito Y, Ogawa Y, Shirakami G, Jougasaki M, Obata K, Yasue H et al (1991) Brain natriuretic peptide as a novel cardiac hormone in humans: evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide, and brain natriuretic peptide. J Clin Invest 87:1402–1412PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Ko HK, Lee JH, Choi BM, Yoo KH, Son CS, Lee JW (2008) Utility of the rapid B-type natriuretic peptide assay for detection of cardiovascular problems in newborn infants with respiratory difficulties. Neonatology 94:16–21CrossRefPubMedGoogle Scholar
  3. 3.
    Law YM, Hoyer AW, Reller MD, Silberbach M (2009) Accuracy of plasma B-type natriuretic peptide to diagnose significant cardiovascular disease in children: the Better Not Pout Children! Study. J Am Coll Cardiol 54:1467–1475CrossRefPubMedGoogle Scholar
  4. 4.
    Huang SC, Wu ET, Ko WJ, Lai LP, Hsu J, Chang CI, Chiu IS, Wang SS, Wu MH, Lin FY, Chen YS (2006) Clinical implication of blood levels of B-type natriuretic peptide in pediatric patients on mechanical circulatory support. Ann Thorac Surg 81:2267–2272CrossRefPubMedGoogle Scholar
  5. 5.
    Choi BM, Lee KH, Eun BL, Yoo KH, Hong YS, Son CS, Lee JW (2005) Utility of rapid B-type natriuretic peptide assay for diagnosis of symptomatic patent ductus arteriosus in preterm infants. Pediatrics 115:e255–e261CrossRefPubMedGoogle Scholar
  6. 6.
    Price JF, Thomas AK, Grenier M, Eidem BW, O’Brian Smith E, Denfield SW, Towbin JA, Dreyer WJ (2006) B-type natriuretic peptide predicts adverse cardiovascular events in pediatric outpatients with chronic left ventricular systolic dysfunction. Circulation 114:1063–1069CrossRefPubMedGoogle Scholar
  7. 7.
    Wei CM, Heublein DM, Perrella MA, Lerman A, Rodeheffer RJ, McGregor CG, Edwards WD, Schaff HV, Burnett JC Jr (1993) Natriuretic peptide system in human heart failure. Circulation 88:1004–1009CrossRefPubMedGoogle Scholar
  8. 8.
    Lechner E, Schreier-Lechner EM, Hofer A, Gitter R, Mair R, Biebl A, Tulzer G (2009) Aminoterminal brain-type natriuretic peptide levels correlate with heart failure in patients with bidirectional Glenn anastomosis and with morbidity after the Fontan operation. J Thorac Cardiovasc Surg 138:560–564CrossRefPubMedGoogle Scholar
  9. 9.
    Ohye RG, Sleeper LA, Mahony L, Newburger JW, Pearson GD, Lu M, Goldberg CS, Tabbutt S, Frommelt PC, Ghanayem NS, Laussen PC, Rhodes JF, Lewis AB, Mital S, Ravishankar C, Williams IA, Dunbar-Masterson C, Atz AM, Colan S, Minich LL, Pizarro C, Kanter KR, Jaggers J, Jacobs JP, Krawczeski CD, Pike N, McCrindle BW, Virzi L, Gaynor JW (2010) Comparison of shunt types in the Norwood procedure for single-ventricle lesions. N Engl J Med 362:1980–1992PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Hehir DA, Dominguez TE, Ballweg JA, Ravishankar C, Marino BS, Bird GL, Nicolson SC, Spray TL, Gaynor JW, Tabbutt S (2008) Risk factors for interstage death after stage 1 reconstruction of hypoplastic left heart syndrome and variants. J Thorac Cardiovasc Surg 136:94–99 99 e91–e93CrossRefPubMedGoogle Scholar
  11. 11.
    Kogon BE, Ramaswamy V, Todd K, Plattner C, Kirshbom PM, Kanter KR, Simsic J (2007) Feeding difficulty in newborns following congenital heart surgery. Congenit Heart Dis 2:332–337CrossRefPubMedGoogle Scholar
  12. 12.
    Koch A, Zink S, Singer H (2006) B-type natriuretic peptide in paediatric patients with congenital heart disease. Eur Heart J 27:861–866CrossRefPubMedGoogle Scholar
  13. 13.
    Holmgren D, Westerlind A, Berggren H, Lundberg PA, Wahlander H (2008) Increased natriuretic peptide type B level after the second palliative step in children with univentricular hearts with right ventricular morphology but not left ventricular morphology. Pediatr Cardiol 29:786–792CrossRefPubMedGoogle Scholar
  14. 14.
    Hsu DT, Zak V, Mahony L, Sleeper LA, Atz AM, Levine JC, Barker PC, Ravishankar C, McCrindle BW, Williams RV, Altmann K, Ghanayem NS, Margossian R, Chung WK, Border WL, Pearson GD, Stylianou MP, Mital S (2010) Enalapril in infants with single ventricle: results of a multicenter randomized trial. Circulation 122:333–340PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Hsu DT, Mital S, Ravishankar C, Margossian R, Li JS, Sleeper LA, Williams RV, Levine JC, McCrindle BW, Atz AM, Servedio D, Mahony L (2009) Rationale and design of a trial of angiotensin-converting enzyme inhibition in infants with single ventricle. Am Heart J 157:37–45PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Santos H, Cauliez B, Tron C, Brunel V, Lavoinne A (2010) Is heparin plasma suitable for the determination of B-type natriuretic peptide on the Beckman–Coulter Access 2? CCLM/FESCC Clin Chem Lab Med 48:399–401Google Scholar
  17. 17.
    Shimizu H, Aono K, Masuta K, Asada H, Misaki A, Teraoka H (1999) Stability of brain natriuretic peptide (BNP) in human blood samples. Clin Chim Acta Int J Clin Chem 285:169–172CrossRefGoogle Scholar
  18. 18.
    Hsu DT, Mital S, Ravishankar C, Margossian R, Li JS, Sleeper LA, Williams RV, Levine JC, McCrindle BW, Atz AM, Servedio D, Mahony L (2009) Rationale and design of a trial of angiotensin-converting enzyme inhibition in infants with single ventricle. Am Heart J 157:37–45PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Koch A, Singer H (2003) Normal values of B-type natriuretic peptide in infants, children, and adolescents. Heart 89:875–878PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Atz AM, Zak V, Breitbart RE, Colan SD, Pasquali SK, Hsu DT, Lu M, Mahony L, Paridon SM, Puchalski MD, Geva T, McCrindle BW (2011) Factors associated with serum brain natriuretic peptide levels after the Fontan procedure. Congenit Heart Dis 6:313–321PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Eerola A, Jokinen E, Sairanen H, Pihkala J (2010) During treatment protocol for univentricular heart serum levels of natriuretic peptides decrease. Eur J Cardiothorac Surg 38:735–740CrossRefPubMedGoogle Scholar
  22. 22.
    Koch AM, Zink S, Singer H (2008) B-type natriuretic peptide in patients with systemic right ventricle. Cardiology 110:1–7CrossRefPubMedGoogle Scholar
  23. 23.
    Koch AM, Zink S, Singer H, Dittrich S (2008) B-type natriuretic peptide levels in patients with functionally univentricular hearts after total cavopulmonary connection. Eur J Heart Fail 10:60–62CrossRefPubMedGoogle Scholar
  24. 24.
    Holmgren D, Westerlind A, Berggren H, Lundberg PA, Wahlander H (2008) Increased natriuretic peptide type B level after the second palliative step in children with univentricular hearts with right ventricular morphology but not left ventricular morphology. Pediatr Cardiol 29:786–792CrossRefPubMedGoogle Scholar
  25. 25.
    Lowenthal A, Camacho BV, Lowenthal S, Natal-Hernandez L, Liszewski W, Hills NK, Fineman JR, Bernstein HS (2012) Usefulness of B-type natriuretic peptide and N-terminal pro-B-type natriuretic peptide as biomarkers for heart failure in young children with single-ventricle congenital heart disease. Am J Cardiol 109(6):866–872PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Comas F, Sivori G, Ithuralde A, Garcia-Nani MA, Balestrini M, Seara C, Garcia-Delucis P, Nojek C, Ithuralde M (2011) Functional univentricular heart: immediate and long-term results in the different stages of sequential correction. Arch Cardiol Mex 81:82–86PubMedGoogle Scholar
  27. 27.
    d’Udekem Y, Xu MY, Galati JC, Lu S, Iyengar AJ, Konstantinov IE, Wheaton GR, Ramsay JM, Grigg LE, Millar J, Cheung MM, Brizard CP (2012) Predictors of survival after single-ventricle palliation: the impact of right ventricular dominance. J Am Coll Cardiol 59:1178–1185CrossRefPubMedGoogle Scholar
  28. 28.
    Kunii Y, Kamada M, Ohtsuki S, Araki T, Kataoka K, Kageyama M, Nakagawa N, Seino Y (2003) Plasma brain natriuretic peptide and the evaluation of volume overload in infants and children with congenital heart disease. Acta Med Okayama 57:191–197PubMedGoogle Scholar
  29. 29.
    Oosterhof T, Tulevski II, Vliegen HW, Spijkerboer AM, Mulder BJ (2006) Effects of volume and/or pressure overload secondary to congenital heart disease (tetralogy of Fallot or pulmonary stenosis) on right ventricular function using cardiovascular magnetic resonance and B-type natriuretic peptide levels. Am J Cardiol 97:1051–1055CrossRefPubMedGoogle Scholar
  30. 30.
    Paul MA, Backer CL, Binns HJ, Mavroudis C, Webb CL, Yogev R, Franklin WH (2009) B-type natriuretic peptide and heart failure in patients with ventricular septal defect: a pilot study. Pediatr Cardiol 30:1094–1097CrossRefPubMedGoogle Scholar
  31. 31.
    Xanthakis V, Larson MG, Wollert KC, Aragam J, Cheng S, Ho J, Coglianese E, Levy D, Colucci WS, Michael Felker G, Benjamin EJ, Januzzi JL, Wang TJ, Vasan RS (2013) Association of novel biomarkers of cardiovascular stress with left ventricular hypertrophy and dysfunction: implications for screening. J Am Heart Assoc 2:e000399PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Nagaya N, Nishikimi T, Goto Y, Miyao Y, Kobayashi Y, Morii I, Daikoku S, Matsumoto T, Miyazaki S, Matsuoka H, Takishita S, Kangawa K, Matsuo H, Nonogi H (1998) Plasma brain natriuretic peptide is a biochemical marker for the prediction of progressive ventricular remodeling after acute myocardial infarction. Am Heart J 135:21–28CrossRefPubMedGoogle Scholar
  33. 33.
    Eindhoven JA, van den Bosch AE, Jansen PR, Boersma E, Roos-Hesselink JW (2012) The usefulness of brain natriuretic peptide in complex congenital heart disease: a systematic review. J Am Coll Cardiol 60:2140–2149CrossRefPubMedGoogle Scholar
  34. 34.
    Goldberg DJ, French B, McBride MG, Marino BS, Mirarchi N, Hanna BD, Wernovsky G, Paridon SM, Rychik J (2011) Impact of oral sildenafil on exercise performance in children and young adults after the Fontan operation: a randomized, double-blind, placebo-controlled, crossover trial. Circulation 123:1185–1193PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Paridon SM, Mitchell PD, Colan SD, Williams RV, Blaufox A, Li JS, Margossian R, Mital S, Russell J, Rhodes J (2008) A cross-sectional study of exercise performance during the first 2 decades of life after the Fontan operation. J Am Coll Cardiol 52:99–107CrossRefPubMedGoogle Scholar
  36. 36.
    Hall EK, Glatz AC, Quartermain MD, Ravishankar C, Kaufman B, Cohen MS, Hanna BD, Goldberg DJ (2011) Brain-type natriuretic peptide correlates with right heart pressures in a cross section of pediatric heart transplant patients. Pediatr Transplant 15:70–74CrossRefPubMedGoogle Scholar
  37. 37.
    Jan SL, Fu YC, Hwang B, Lin SJ (2012) B-type natriuretic peptide in children with atrial or ventricular septal defect: a cardiac catheterization study. Biomarkers Biochem Indicators Exposure Response Suscept Chem 17:166–171Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ryan J. Butts
    • 1
  • Victor Zak
    • 2
  • Daphne Hsu
    • 3
  • James Cnota
    • 4
  • Steven D. Colan
    • 5
  • David Hehir
    • 6
  • Paul Kantor
    • 7
  • Jami C. Levine
    • 5
  • Renee Margossian
    • 5
  • Marc Richmond
    • 8
  • Anita Szwast
    • 9
  • Derek Williams
    • 10
  • Richard Williams
    • 11
  • Andrew M. Atz
    • 1
  1. 1.Department of PediatricsMedical University of South CarolinaCharlestonUSA
  2. 2.New England Research InstitutesWatertownUSA
  3. 3.Division of CardiologyChildren’s Hospital at MontefioreBronxUSA
  4. 4.Department of CardiologyCincinnati Children’s HospitalCincinnatiUSA
  5. 5.Department of CardiologyBoston Children’s HospitalBostonUSA
  6. 6.Department of PediatricsMedical College of WisconsinMilwaukeeUSA
  7. 7.Department of CardiologyHospital for Sick ChildrenTorontoCanada
  8. 8.Department of CardiologyChildren’s Hospital of New YorkNew YorkUSA
  9. 9.Department of CardiologyChildren’s Hospital of PhiladelphiaPhiladelphiaUSA
  10. 10.Department of CardiologyBrenner Children’s HospitalWinston-SalemUSA
  11. 11.Department of PediatricsUniversity of UtahSalt Lake CityUSA

Personalised recommendations